Skip to main content
Log in

Sarcomere Gene Mutations in Hypertrophy and Heart Failure

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Despite considerable progress in identifying and modifying risk factors that cause cardiovascular disease, heart failure has emerged as an important medical and socioeconomic problem. Hypertrophic remodeling, a common response to many cardiovascular disorders, increases the risk of heart failure. Discovery of the genetic basis of hypertrophic cardiomyopathy has allowed consideration of whether these genes also contribute to pathologic remodeling that occurs in the context of common acquired cardiovascular disorders. Evidence supporting a shared etiology has emerged from the recent identification of sarcomere protein mutations and sequence variants in community-based populations with hypertrophy and heart failure. These findings imply that harnessing genetic testing for hypertrophic mutations may help define patients at risk for heart failure. In the future, mechanistic insights into hypertrophic remodeling, combined with strategies to prevent this pathology, are expected to reduce the burden of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Heart Association. (2009). Heart disease and stroke statistics—2009 update. Dallas: American Heart Association.

    Google Scholar 

  2. Arad, M., Maron, B. J., Gorham, J. M., Johnson, W. H., Jr., Saul, J. P., Perez-Atayde, A. R., et al. (2005). Glycogen storage diseases presenting as hypertrophic cardiomyopathy. The New England Journal of Medicine, 352, 362–372.

    Article  PubMed  CAS  Google Scholar 

  3. Arimura, T., Bos, J. M., Sato, A., Kubo, T., Okamoto, H., Nishi, H., et al. (2009). Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 54, 334–342.

    Article  PubMed  CAS  Google Scholar 

  4. Arnett, D. K., Devereux, R. B., Rao, D. C., Li, N., Tang, W., Kraemer, R., et al. (2009). Novel genetic variants contributing to left ventricular hypertrophy: The HyperGEN study. Journal of Hypertension, 27, 1585–1593.

    Article  PubMed  CAS  Google Scholar 

  5. Bos, J. M., Towbin, J. A., & Ackerman, M. J. (2009). Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 54, 201–211.

    Article  PubMed  CAS  Google Scholar 

  6. Carniel, E., Taylor, M. R., Sinagra, G., Di Lenarda, A., Ku, L., Fain, P. R., et al. (2005). Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation, 112, 54–59.

    Article  PubMed  CAS  Google Scholar 

  7. Cohen, J. C., Kiss, R. S., Pertsemlidis, A., Marcel, Y. L., McPherson, R., & Hobbs, H. H. (2004). Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science, 305, 869–872.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, J. C., Boerwinkle, E., Mosley, T. H., Jr., & Hobbs, H. H. (2006). Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. The New England Journal of Medicine, 354, 1264–1272.

    Article  PubMed  CAS  Google Scholar 

  9. Daw, E. W., Chen, S. N., Czernuszewicz, G., Lombardi, R., Lu, Y., Ma, J., et al. (2007). Genome-wide mapping of modifier chromosomal loci for human hypertrophic cardiomyopathy. Human Molecular Genetics, 16, 2463–2471.

    Article  PubMed  CAS  Google Scholar 

  10. Dhandapany, P. S., Sadayappan, S., Xue, Y., Powell, G. T., Rani, D. S., Nallari, P., et al. (2009). A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nature Genetics, 41, 187–191.

    Article  PubMed  CAS  Google Scholar 

  11. Drazner, M. H., Rame, J. E., Marino, E. K., Gottdiener, J. S., Kitzman, D. W., Gardin, J. M., et al. (2004). Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: The Cardiovascular Health Study. Journal of the American College of Cardiology, 43, 2207–2215.

    Article  PubMed  Google Scholar 

  12. Ehlermann, P., Weichenhan, D., Zehelein, J., Steen, H., Pribe, R., Zeller, R., et al. (2008). Adverse events in families with hypertrophic or dilated cardiomyopathy and mutations in the MYBPC3 gene. BMC Medical Genetics, 9, 95.

    Article  PubMed  CAS  Google Scholar 

  13. Flavigny, J., Souchet, M., Sebillon, P., Berrebi-Bertrand, I., Hainque, B., Mallet, A., et al. (1999). COOH-terminal truncated cardiac myosin-binding protein C mutants resulting from familial hypertrophic cardiomyopathy mutations exhibit altered expression and/or incorporation in fetal rat cardiomyocytes. Journal of Molecular Biology, 294, 443–456.

    Article  PubMed  CAS  Google Scholar 

  14. Gardin, J. M., McClelland, R., Kitzman, D., Lima, J. A., Bommer, W., Klopfenstein, H. S., et al. (2001). M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study). The American Journal of Cardiology, 87, 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  15. Geier, C., Perrot, A., Ozcelik, C., Binner, P., Counsell, D., Hoffmann, K., et al. (2003). Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation, 107, 1390–1395.

    Article  PubMed  CAS  Google Scholar 

  16. Ghali, J. K., Liao, Y., Simmons, B., Castaner, A., Cao, G., & Cooper, R. S. (1992). The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Annals of Internal Medicine, 117, 831–836.

    PubMed  CAS  Google Scholar 

  17. Gupta, R. M., Pais, A., Rastogi, P., & Gupta, V. P. (2006). Correlation of regional cardiovascular mortality in India with lifestyle and nutritional factors. International Journal of Cardiology, 108, 291–300.

    Article  PubMed  Google Scholar 

  18. Hayashi, T., Arimura, T., Itoh-Satoh, M., Ueda, K., Hohda, S., Inagaki, N., et al. (2004). TCAP gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. Journal of the American College of Cardiology, 44, 2192–2201.

    Article  PubMed  CAS  Google Scholar 

  19. Hershberger, R. E., Cowan, J., Morales, A., & Siegfried, J. D. (2009). Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation: Heart Failure, 2, 253–261.

    Article  Google Scholar 

  20. Holm, H., Gudbjartsson, D. F., Arnar, D. O., Thorleifsson, G., Thorgeirsson, G., Stefansdottir, H., et al. (2010). Several common variants modulate heart rate, PR interval and QRS duration. Nature Genetics, 42, 117–122.

    Article  PubMed  CAS  Google Scholar 

  21. Ingles, J., Doolan, A., Chiu, C., Seidman, J., Seidman, C., & Semsarian, C. (2005). Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. Journal of Medical Genetics, 42, e59.

    Article  PubMed  CAS  Google Scholar 

  22. Jaaskelainen, P., Kuusisto, J., Miettinen, R., Karkkainen, P., Karkkainen, S., Heikkinen, S., et al. (2002). Mutations in the cardiac myosin-binding protein C gene are the predominant cause of familial hypertrophic cardiomyopathy in eastern Finland. Journal of Molecular Medicine, 80, 412–422.

    Article  PubMed  CAS  Google Scholar 

  23. Kathiresan, S., Melander, O., Guiducci, C., Surti, A., Burtt, N. P., Rieder, M. J., et al. (2008). Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nature Genetics, 40, 189–197.

    Article  PubMed  CAS  Google Scholar 

  24. Landstrom, A. P., Weisleder, N., Batalden, K. B., Bos, J. M., Tester, D. J., Ommen, S. R., et al. (2007). Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. Journal of Molecular and Cellular Cardiology, 42, 1026–1035.

    Article  PubMed  CAS  Google Scholar 

  25. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B., & Castelli, W. P. (1990). Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. The New England Journal of Medicine, 322, 1561–1566.

    Article  PubMed  CAS  Google Scholar 

  26. Lind, J. M., Chiu, C., Ingles, J., Yeates, L., Humphries, S. E., Heather, A. K., et al. (2008). Sex hormone receptor gene variation associated with phenotype in male hypertrophic cardiomyopathy patients. Journal of Molecular and Cellular Cardiology, 45, 217–222.

    Article  PubMed  CAS  Google Scholar 

  27. Lloyd-Jones, D., Adams, R., Carnethon, M., De Simone, G., Ferguson, T. B., Flegal, K., et al. (2009). Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 119, 480–486.

    Article  PubMed  Google Scholar 

  28. Maron, B. J. (2002). Hypertrophic cardiomyopathy: a systematic review. Journal of the American Medical Association, 287, 1308–1320.

    Article  PubMed  Google Scholar 

  29. Maron, B. J. (2003). Sudden death in young athletes. The New England Journal of Medicine, 349, 1064–1075.

    Article  PubMed  CAS  Google Scholar 

  30. Maron, B. (2008). Hypertrophic cardiomyopathy. In P. Libby, R. Bonow, D. Zipes, & D. Mann (Eds.), Braunwald's heart disease. A textbook of cardiovascular medicine (8th ed., pp. 1763–1774). Maryland Heights: Elsevier.

    Google Scholar 

  31. Maron, B. J., Gardin, J. M., Flack, J. M., Gidding, S. S., Kurosaki, T. T., & Bild, D. E. (1995). Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development In (young) Adults. Circulation, 92, 785–789.

    PubMed  CAS  Google Scholar 

  32. Maron, B. J., Seidman, J. G., & Seidman, C. E. (2004). Proposal for contemporary screening strategies in families with hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 44, 2125–2132.

    Article  PubMed  Google Scholar 

  33. Marston, S., Copeland, O., Jacques, A., Livesey, K., Tsang, V., McKenna, W. J., et al. (2009). Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circulation Research, 105, 219–222.

    Article  PubMed  CAS  Google Scholar 

  34. Mayosi, B. M., Avery, P. J., Farrall, M., Keavney, B., & Watkins, H. (2008). Genome-wide linkage analysis of electrocardiographic and echocardiographic left ventricular hypertrophy in families with hypertension. European Heart Journal, 29, 525–530.

    Article  PubMed  Google Scholar 

  35. McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science, 316, 1488–1491.

    Article  PubMed  CAS  Google Scholar 

  36. Morita, H., DePalma, S. R., Arad, M., McDonough, B., Barr, S., Duffy, C., et al. (2002). Molecular epidemiology of hypertrophic cardiomyopathy. Cold Spring Harbor Symposia on Quantitative Biology, 67, 383–388.

    Article  PubMed  CAS  Google Scholar 

  37. Morita, H., Seidman, J., & Seidman, C. E. (2005). Genetic causes of human heart failure. Journal of Clinical Investigation, 115, 518–526.

    PubMed  CAS  Google Scholar 

  38. Morita, H., Larson, M. G., Barr, S. C., Vasan, R. S., O'Donnell, C. J., Hirschhorn, J. N., et al. (2006). Single-gene mutations and increased left ventricular wall thickness in the community: The Framingham Heart Study. Circulation, 113, 2697–2705.

    Article  PubMed  Google Scholar 

  39. Morita, H., Rehm, H. L., Menesses, A., McDonough, B., Roberts, A. E., Kucherlapati, R., et al. (2008). Shared genetic causes of cardiac hypertrophy in children and adults. The New England Journal of Medicine, 358, 1899–1908.

    Article  PubMed  CAS  Google Scholar 

  40. Nakao, S., Takenaka, T., Maeda, M., Kodama, C., Tanaka, A., Tahara, M., et al. (1995). An atypical variant of Fabry's disease in men with left ventricular hypertrophy. The New England Journal of Medicine, 333, 288–293.

    Article  PubMed  CAS  Google Scholar 

  41. Niimura, H., Bachinski, L. L., Sangwatanaroj, S., Watkins, H., Chudley, A. E., McKenna, W., et al. (1998). Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. The New England Journal of Medicine, 338, 1248–1257.

    Article  PubMed  CAS  Google Scholar 

  42. Niimura, H., Patton, K. K., McKenna, W. J., Soults, J., Maron, B. J., Seidman, J. G., et al. (2002). Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation, 105, 446–451.

    Article  PubMed  CAS  Google Scholar 

  43. Okura, Y., Ramadan, M. M., Ohno, Y., Mitsuma, W., Tanaka, K., Ito, M., et al. (2008). Impending epidemic: Future projection of heart failure in Japan to the year 2055. Circulation Journal, 72, 489–491.

    Article  PubMed  Google Scholar 

  44. Olivotto, I., Girolami, F., Ackerman, M. J., Nistri, S., Bos, J. M., Zachara, E., et al. (2008). Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clinic Proceedings, 83, 630–638.

    Article  PubMed  CAS  Google Scholar 

  45. Osio, A., Tan, L., Chen, S. N., Lombardi, R., Nagueh, S. F., Shete, S., et al. (2007). Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circulation Research, 100, 766–768.

    Article  PubMed  CAS  Google Scholar 

  46. Perkins, M. J., Van Driest, S. L., Ellsworth, E. G., Will, M. L., Gersh, B. J., Ommen, S. R., et al. (2005). Gene-specific modifying effects of pro-LVH polymorphisms involving the renin–angiotensin–aldosterone system among 389 unrelated patients with hypertrophic cardiomyopathy. European Heart Journal, 26, 2457–2462.

    Article  PubMed  CAS  Google Scholar 

  47. Petretto, E., Sarwar, R., Grieve, I., Lu, H., Kumaran, M. K., Muckett, P. J., et al. (2008). Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nature Genetics, 40, 546–552.

    Article  PubMed  CAS  Google Scholar 

  48. Pfeufer, A., van Noord, C., Marciante, K. D., Arking, D. E., Larson, M. G., Smith, A. V., et al. (2010). Genome-wide association study of PR interval. Nature Genetics, 42, 153–161.

    Article  PubMed  CAS  Google Scholar 

  49. Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., et al. (2003). Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation, 107, 2227–2232.

    Article  PubMed  Google Scholar 

  50. Seidman, J. G., & Seidman, C. (2001). The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell, 104, 557–567.

    Article  PubMed  CAS  Google Scholar 

  51. van Dijk, S. J., Dooijes, D., dos Remedios, C., Michels, M., Lamers, J. M., Winegrad, S., et al. (2009). Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: Haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation, 119, 1473–1483.

    Article  PubMed  CAS  Google Scholar 

  52. Van Driest, S. L., Jaeger, M. A., Ommen, S. R., Will, M. L., Gersh, B. J., Tajik, A. J., et al. (2004). Comprehensive analysis of the beta-myosin heavy chain gene in 389 unrelated patients with hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 44, 602–610.

    Article  PubMed  CAS  Google Scholar 

  53. Vasile, V. C., Will, M. L., Ommen, S. R., Edwards, W. D., Olson, T. M., & Ackerman, M. J. (2006). Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Molecular Genetics and Metabolism, 87, 169–174.

    Article  PubMed  CAS  Google Scholar 

  54. Volkmann, N., Lui, H., Hazelwood, L., Trybus, K. M., Lowey, S., & Hanein, D. (2007). The R403Q myosin mutation implicated in familial hypertrophic cardiomyopathy causes disorder at the actomyosin interface. PLoS ONE, 2, e1123.

    Article  PubMed  CAS  Google Scholar 

  55. Watkins, H., McKenna, W. J., Thierfelder, L., Suk, H. J., Anan, R., O'Donoghue, A., et al. (1995). Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. The New England Journal of Medicine, 332, 1058–1064.

    Article  PubMed  CAS  Google Scholar 

  56. Williams, L., & Frenneaux, M. (2007). Syncope in hypertrophic cardiomyopathy: Mechanisms and consequences for treatment. Europace, 9, 817–822.

    Article  PubMed  Google Scholar 

  57. Willott, R. H., Gomes, A. V., Chang, A. N., Parvatiyar, M. S., Pinto, J. R., & Potter, J. D. (2010). Mutations in troponin that cause HCM, DCM AND RCM: What can we learn about thin filament function? Journal of Molecular and Cellular Cardiology, 48, 882–892.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (H.M. and R.N.), the TAKEDA Science Foundation (H.M.), the National Institutes of Health (J.G.S. and C.E.S.), the Leducq Foundation (J.G.S. and C.E.S.), and the Howard Hughes Medical Institute (C.E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Seidman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, H., Nagai, R., Seidman, J.G. et al. Sarcomere Gene Mutations in Hypertrophy and Heart Failure. J. of Cardiovasc. Trans. Res. 3, 297–303 (2010). https://doi.org/10.1007/s12265-010-9188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9188-4

Keywords

Navigation