Skip to main content

Advertisement

Log in

Molecular Cardiology in Translation: Gene, Cell and Chemical-Based Experimental Therapeutics for the Failing Heart

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Acquired and inherited diseases of the heart represent a major health care issue in this country and throughout the World. Clinical medicine has made important advancements in the past quarter century to enable several effective treatment regimes for cardiac patients. Nevertheless, it is apparent that even with the best care, current treatment strategies and therapeutics are inadequate for treating heart disease, leaving it arguably the most pressing health issue today. In this context it is important to seek new approaches to redress the functional deficits in failing myocardium. This review focuses on several recent gene, cell and chemical-based experimental therapeutics currently being developed in the laboratory for potential translation to patient care. For example, new advances in bio-sensing inducible gene expression systems offer the potential for designer cardio-protective proteins to be expressed only during hypoxia/ischemia in the heart. Stem cells continue to offer the promise of cardiac repair, and some recent advances are discussed here. In addition, discovery and applications of synthetic polymers are presented as a chemical-based strategy for acute and chronic treatment of diseased and failing cardiac tissue. Collectively, these approaches serve as the front lines in basic biomedical research, with an eye toward translation of these findings to clinically meaningful applications in cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosamond, W., Flegal, K., Friday, G., Furie, K., Go, A., Greenlund, K., Haase, N., Ho, M., Howard, V., Kissela, B., et al. (2007). Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 115, e69–e171.

    Article  PubMed  Google Scholar 

  2. Thom, T., Haase, N., Rosamond, W., Howard, V. J., Rumsfeld, J., Manolio, T., Zheng, Z. J., Flegal, K., O’Donnell, C., Kittner, S., et al. (2006). Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 113, e85–e151.

    Article  PubMed  Google Scholar 

  3. Fomicheva, E. V., Turner, II, Edwards, T. G., Hoff, J., Arden, E., D’Alecy, L. G., & Metzger, J. M. (2008). Double oxygen-sensing vector system for robust hypoxia/ischemia-regulated gene induction in cardiac muscle in vitro and in vivo. Molecular Therapy, 16(9), 1594–1601.

    Article  PubMed  CAS  Google Scholar 

  4. Tang, Y., Schmitt-Ott, K., Qian, K., Kagiyama, S., & Phillips, M. I. (2002). Vigilant vectors: adeno-associated virus with a biosensor to switch on amplified therapeutic genes in specific tissues in life-threatening diseases. Methods, 28, 259–266.

    Article  PubMed  CAS  Google Scholar 

  5. Boast, K., Binley, K., Iqball, S., Price, T., Spearman, H., Kingsman, S., Kingsman, A., & Naylor, S. (1999). Characterization of physiologically regulated vectors for the treatment of ischemic disease. Human Gene Therapy, 10, 2197–2208.

    Article  PubMed  CAS  Google Scholar 

  6. Binley, K., Kan, O., White, J., & Naylor, S. (2003). Exploiting the hypoxia response. Current Opinion In Molecular Therapeutics, 5, 650–656.

    PubMed  CAS  Google Scholar 

  7. Goverdhana, S., Puntel, M., Xiong, W., Zirger, J. M., Barcia, C., Curtin, J. F., Soffer, E. B., Mondkar, S., King, G. D., Hu, J., et al. (2005). Regulatable gene expression systems for gene therapy applications: progress and future challenges. Molecular Therapy, 12, 189–211.

    Article  PubMed  CAS  Google Scholar 

  8. Prentice, H., Bishopric, N. H., Hicks, M. N., Discher, D. J., Wu, X., Wylie, A. A., & Webster, K. A. (1997). Regulated expression of a foreign gene targeted to the ischaemic myocardium. Cardiovascular Research, 35, 567–574.

    Article  PubMed  CAS  Google Scholar 

  9. Su, H., Arakawa-Hoyt, J., & Kan, Y. W. (2002). Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proceedings of the National Academy of Sciences of the United States of America, 99, 9480–9485.

    Article  PubMed  CAS  Google Scholar 

  10. Wenger, R. H., Stiehl, D. P., & Camenisch, G. (2005). Integration of oxygen signaling at the consensus HRE. Sci STKE 2005, re12.

  11. Lang, K. J., Kappel, A., & Goodall, G. J. (2002). Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Molecular Biology of the Cell, 13, 1792–1801.

    Article  PubMed  CAS  Google Scholar 

  12. Erbel, P. J., Card, P. B., Karakuzu, O., Bruick, R. K., & Gardner, K. H. (2003). Structural basis for PAS domain heterodimerization in the basic helix–loop–helix-PAS transcription factor hypoxia-inducible factor. Proceedings of the National Academy of Sciences of the United States of America, 100, 15504–15509.

    Article  PubMed  CAS  Google Scholar 

  13. Wenger, R. H. (2000). Mammalian oxygen sensing, signalling and gene regulation. Journal of Experimental Biology, 203, 1253–1263.

    PubMed  CAS  Google Scholar 

  14. Huang, L. E., Gu, J., Schau, M., & Bunn, H. F. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin–proteasome pathway. Proceedings of the National Academy of Sciences of the United States of America, 95, 7987–7992.

    Article  PubMed  CAS  Google Scholar 

  15. Bruick, R. K., & McKnight, S. L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 294, 1337–1340.

    Article  PubMed  CAS  Google Scholar 

  16. Krek, W. (2000). VHL takes HIF’s breath away. Nature Cell Biology, 2, E121–123.

    Article  PubMed  CAS  Google Scholar 

  17. Ohh, M., Park, C. W., Ivan, M., Hoffman, M. A., Kim, T. Y., Huang, L. E., Pavletich, N., Chau, V., & Kaelin, W. G. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nature Cell Biology, 2, 423–427.

    Article  PubMed  CAS  Google Scholar 

  18. Tang, Y. L., Tang, Y., Zhang, Y. C., Agarwal, A., Kasahara, H., Qian, K., Shen, L., & Phillips, M. I. (2005). A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia. Gene Therapy, 12, 1163–1170.

    Article  PubMed  CAS  Google Scholar 

  19. del Monte, F., & Hajjar, R. J. (2003). Targeting calcium cycling proteins in heart failure through gene transfer. Journal of Physiology, 546, 49–61.

    Article  PubMed  CAS  Google Scholar 

  20. Hoshijima, M. (2005). Gene therapy targeted at calcium handling as an approach to the treatment of heart failure. Pharmacology and Therapeutics, 105, 211–228.

    Article  PubMed  CAS  Google Scholar 

  21. Minamisawa, S., Hoshijima, M., Chu, G., Ward, C. A., Frank, K., Gu, Y., Martone, M. E., Wang, Y., Ross Jr., J., Kranias, E. G., et al. (1999). Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell, 99, 313–322.

    Article  PubMed  CAS  Google Scholar 

  22. Most, P., Pleger, S. T., Volkers, M., Heidt, B., Boerries, M., Weichenhan, D., Loffler, E., Janssen, P. M., Eckhart, A. D., Martini, J., et al. (2004). Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. Journal of Clinical Investigation, 114, 1550–1563.

    PubMed  CAS  Google Scholar 

  23. del Monte, F., Harding, S. E., Schmidt, U., Matsui, T., Kang, Z. B., Dec, G. W., Gwathmey, J. K., Rosenzweig, A., & Hajjar, R. J. (1999). Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation, 100, 2308–2311.

    CAS  Google Scholar 

  24. Hirsch, J. C., Borton, A. R., Albayya, F. P., Russell, M. W., Ohye, R. G., & Metzger, J. M. (2004). Comparative analysis of parvalbumin and SERCA2a cardiac myocyte gene transfer in a large animal model of diastolic dysfunction. American Journal of Physiology. Heart and Circulatory Physiology, 286, H2314–H2321.

    Article  PubMed  CAS  Google Scholar 

  25. Terracciano, C. M., Souza, A. I., Philipson, K. D., & MacLeod, K. T. (1998). Na+–Ca2+ exchange and sarcoplasmic reticular Ca2+ regulation in ventricular myocytes from transgenic mice overexpressing the Na+–Ca2+ exchanger. Journal of Physiology, 512(Pt 3), 651–667.

    Article  PubMed  CAS  Google Scholar 

  26. Pogwizd, S. M., & Bers, D. M. (2002). Na/Ca exchange in heart failure: contractile dysfunction and arrhythmogenesis. Annals of the New York Academy of Sciences, 976, 454–465.

    Article  PubMed  CAS  Google Scholar 

  27. Seidler, T., Miller, S. L., Loughrey, C. M., Kania, A., Burow, A., Kettlewell, S., Teucher, N., Wagner, S., Kogler, H., Meyers, M. B., et al. (2003). Effects of adenovirus-mediated sorcin overexpression on excitation–contraction coupling in isolated rabbit cardiomyocytes. Circulation Research, 93, 132–139.

    Article  PubMed  CAS  Google Scholar 

  28. Suarez, J., Belke, D. D., Gloss, B., Dieterle, T., McDonough, P. M., Kim, Y. K., Brunton, L. L., & Dillmann, W. H. (2004). In vivo adenoviral transfer of sorcin reverses cardiac contractile abnormalities of diabetic cardiomyopathy. American Journal of Physiology. Heart and Circulatory Physiology, 286, H68–H75.

    Article  PubMed  CAS  Google Scholar 

  29. Huq, F., Lebeche, D., Iyer, V., Liao, R., & Hajjar, R. J. (2004). Gene transfer of parvalbumin improves diastolic dysfunction in senescent myocytes. Circulation, 109, 2780–2785.

    Article  PubMed  CAS  Google Scholar 

  30. Michele, D. E., Szatkowski, M. L., Albayya, F. P., & Metzger, J. M. (2004). Parvalbumin gene delivery improves diastolic function in the aged myocardium in vivo. Molecular Therapy, 10, 399–403.

    Article  PubMed  CAS  Google Scholar 

  31. Sakata, S., Lebeche, D., Sakata, N., Sakata, Y., Chemaly, E. R., Liang, L. F., Tsuji, T., Takewa, Y., del Monte, F., Peluso, R., et al. (2007). Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. Journal of Molecular and Cellular Cardiology, 42, 852–861.

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt, U., Zhu, X., Lebeche, D., Huq, F., Guerrero, J. L., & Hajjar, R. J. (2005). In vivo gene transfer of parvalbumin improves diastolic function in aged rat hearts. Cardiovascular Research, 66, 318–323.

    Article  PubMed  CAS  Google Scholar 

  33. Szatkowski, M. L., Westfall, M. V., Gomez, C. A., Wahr, P. A., Michele, D. E., DelloRusso, C., Turner, I. I., Hong, K. E., Albayya, F. P., & Metzger, J. M. (2001). In vivo acceleration of heart relaxation performance by parvalbumin gene delivery. Journal of Clinical Investigation, 107, 191–198.

    Article  PubMed  CAS  Google Scholar 

  34. Rodenbaugh, D. W., Wang, W., Davis, J., Edwards, T., Potter, J. D., & Metzger, J. M. (2007). Parvalbumin isoforms differentially accelerate cardiac myocyte relaxation kinetics in an animal model of diastolic dysfunction. American Journal of Physiology. Heart and Circulatory Physiology, 293, H1705–H1713.

    Article  PubMed  CAS  Google Scholar 

  35. Ding, X. L., Akella, A. B., Sonnenblick, E. H., Rao, V. G., & Gulati, J. (1996). Molecular basis of depression of Ca2+ sensitivity of tension by acid pH in cardiac muscles of the mouse and the rat. Journal of Cardiac Failure, 2, 319–326.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, J. A., & Allen, D. G. (1991). Mechanisms of acute ischemic contractile failure of the heart. Role of intracellular calcium. Journal of Clinical Investigation, 88, 361–367.

    Article  PubMed  CAS  Google Scholar 

  37. Parsons, B., Szczesna, D., Zhao, J., Van Slooten, G., Kerrick, W. G., Putkey, J. A., & Potter, J. D. (1997). The effect of pH on the Ca2+ affinity of the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres. Journal of Muscle Research and Cell Motility, 18, 599–609.

    Article  PubMed  CAS  Google Scholar 

  38. Farah, C. S., & Reinach, F. C. (1995). The troponin complex and regulation of muscle contraction. FASEB Journal, 9, 755–767.

    PubMed  CAS  Google Scholar 

  39. Bers, D. M. (2002). Cardiac excitation–contraction coupling. Nature, 415, 198–205.

    Article  PubMed  CAS  Google Scholar 

  40. Orchard, C. H., & Kentish, J. C. (1990). Effects of changes of pH on the contractile function of cardiac muscle. American Journal of Physiology, 258, C967–C981.

    PubMed  CAS  Google Scholar 

  41. Dargis, R., Pearlstone, J. R., Barrette-Ng, I., Edwards, H., & Smillie, L. B. (2002). Single mutation (A162H) in human cardiac troponin I corrects acid pH sensitivity of Ca2+-regulated actomyosin S1 ATPase. Journal of Biological Chemistry, 277, 34662–34665.

    Article  PubMed  CAS  Google Scholar 

  42. Day, S. M., Westfall, M. V., Fomicheva, E. V., Hoyer, K., Yasuda, S., La Cross, N. C., D’Alecy, L. G., Ingwall, J. S., & Metzger, J. M. (2006). Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nature Medicine, 12, 181–189.

    Article  PubMed  CAS  Google Scholar 

  43. Godt, R. E., & Nosek, T. M. (1989). Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. Journal of Physiology, 412, 155–180.

    PubMed  CAS  Google Scholar 

  44. Westfall, M. V., Borton, A. R., Albayya, F. P., & Metzger, J. M. (2002). Myofilament calcium sensitivity and cardiac disease: insights from troponin I isoforms and mutants. Circulation Research, 91, 525–531.

    Article  PubMed  CAS  Google Scholar 

  45. Westfall, M. V., & Metzger, J. M. (2007). Single amino acid substitutions define isoform-specific effects of troponin I on myofilament Ca2+ and pH sensitivity. Journal of Molecular and Cellular Cardiology, 43, 107–118.

    Article  PubMed  CAS  Google Scholar 

  46. Ricciardi, L., Bottinelli, R., Canepari, M., & Reggiani, C. (1994). Effects of acidosis on maximum shortening velocity and force–velocity relation of skinned rat cardiac muscle. Journal of Molecular and Cellular Cardiology, 26, 601–607.

    Article  PubMed  CAS  Google Scholar 

  47. Ricciardi, L., Bucx, J. J., & ter Keurs, H. E. (1986). Effects of acidosis on force–sarcomere length and force–velocity relations of rat cardiac muscle. Cardiovascular Research, 20, 117–123.

    Article  PubMed  CAS  Google Scholar 

  48. Day, S. M., Westfall, M. V., & Metzger, J. M. (2007). Tuning cardiac performance in ischemic heart disease and failure by modulating myofilament function. Journal of Molecular Medicine, 85, 911–921.

    Article  PubMed  Google Scholar 

  49. Metzger, J. M., Michele, D. E., Rust, E. M., Borton, A. R., & Westfall, M. V. (2003). Sarcomere thin filament regulatory isoforms. Evidence of a dominant effect of slow skeletal troponin I on cardiac contraction. Journal of Biological Chemistry, 278, 13118–13123.

    Article  PubMed  CAS  Google Scholar 

  50. Urboniene, D., Dias, F. A., Pena, J. R., Walker, L. A., Solaro, R. J., & Wolska, B. M. (2005). Expression of slow skeletal troponin I in adult mouse heart helps to maintain the left ventricular systolic function during respiratory hypercapnia. Circulation Research, 97, 70–77.

    Article  PubMed  CAS  Google Scholar 

  51. Westfall, M. V., Rust, E. M., & Metzger, J. M. (1997). Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function. Proceedings of the National Academy of Sciences of the United States of America, 94, 5444–5449.

    Article  PubMed  CAS  Google Scholar 

  52. Wolska, B. M., Vijayan, K., Arteaga, G. M., Konhilas, J. P., Phillips, R. M., Kim, R., Naya, T., Leiden, J. M., Martin, A. F., de Tombe, P. P., et al. (2001). Expression of slow skeletal troponin I in adult transgenic mouse heart muscle reduces the force decline observed during acidic conditions. Journal of Physiology, 536, 863–870.

    Article  PubMed  CAS  Google Scholar 

  53. Westfall, M. V., Albayya, F. P., Turner, I. I., & Metzger, J. M. (2000). Chimera analysis of troponin I domains that influence Ca(2+)-activated myofilament tension in adult cardiac myocytes. Circulation Research, 86, 470–477.

    PubMed  CAS  Google Scholar 

  54. Westfall, M. V., & Metzger, J. M. (2001). Troponin I isoforms and chimeras: tuning the molecular switch of cardiac contraction. News in Physiological Sciences, 16, 278–281.

    PubMed  CAS  Google Scholar 

  55. Westfall, M. V., & Metzger, J. M. (2003). Gene transfer of troponin I isoforms, mutants, and chimeras. Advances in Experimental Medicine and Biology, 538, 169–174 discussion 174.

    PubMed  CAS  Google Scholar 

  56. Takeda, S., Yamashita, A., Maeda, K., & Maeda, Y. (2003). Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature, 424, 35–41.

    Article  PubMed  CAS  Google Scholar 

  57. Metzger, J. M., & Westfall, M. V. (2004). Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. Circulation Research, 94, 146–158.

    Article  PubMed  CAS  Google Scholar 

  58. Arteaga, G. M., Warren, C. M., Milutinovic, S., Martin, A. F., & Solaro, R. J. (2005). Specific enhancement of sarcomeric response to Ca2+ protects murine myocardium against ischemia–reperfusion dysfunction. American Journal of Physiology. Heart and Circulatory Physiology, 289, H2183–H2192.

    Article  PubMed  CAS  Google Scholar 

  59. Liou, Y. M., Kuo, S. C., & Hsieh, S. R. (2008). Differential effects of a green tea-derived polyphenol (−)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca(2+) sensitivity of cardiac and skeletal muscle. Pflugers Archives, 456, 787–800.

    Article  CAS  Google Scholar 

  60. Mann, D. L., & Bristow, M. R. (2005). Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation, 111, 2837–2849.

    Article  PubMed  Google Scholar 

  61. Oldner, A., Konrad, D., Weitzberg, E., Rudehill, A., Rossi, P., & Wanecek, M. (2001). Effects of levosimendan, a novel inotropic calcium-sensitizing drug, in experimental septic shock. Critical Care Medicine, 29, 2185–2193.

    Article  PubMed  CAS  Google Scholar 

  62. Palpant, N. J., Day, S. M., Herron, T. J., Converso, K. L., & Metzger, J. M. (2008). Single histidine substituted cardiac troponin I confers protection from age-related systolic and diastolic dysfunction. Cardiovascular Research. doi:10.1093/cvr/cvn198.

  63. Couzin, J., & Vogel, G. (2004). Cell therapy. Renovating the heart. Science, 304, 192–194.

    Article  PubMed  CAS  Google Scholar 

  64. Mathur, A., & Martin, J. F. (2004). Stem cells and repair of the heart. Lancet, 364, 183–192.

    Article  PubMed  CAS  Google Scholar 

  65. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.

    Article  PubMed  CAS  Google Scholar 

  66. Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., Nadal-Ginard, B., Bodine, D. M., Leri, A., & Anversa, P. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 98, 10344–10349.

    Article  PubMed  CAS  Google Scholar 

  67. Dimmeler, S., Zeiher, A. M., & Schneider, M. D. (2005). Unchain my heart: the scientific foundations of cardiac repair. Journal of Clinical Investigation, 115, 572–583.

    PubMed  CAS  Google Scholar 

  68. Melo, L. G., Pachori, A. S., Kong, D., Gnecchi, M., Wang, K., Pratt, R. E., & Dzau, V. J. (2004). Molecular and cell-based therapies for protection, rescue, and repair of ischemic myocardium: reasons for cautious optimism. Circulation, 109, 2386–2393.

    Article  PubMed  Google Scholar 

  69. Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., & Chopp, M. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 32, 1005–1011.

    PubMed  CAS  Google Scholar 

  70. Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95, 9–20.

    Article  PubMed  CAS  Google Scholar 

  71. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.

    Article  PubMed  Google Scholar 

  72. Tomita, S., Li, R. K., Weisel, R. D., Mickle, D. A., Kim, E. J., Sakai, T., & Jia, Z. Q. (1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation, 100, II247–II256.

    PubMed  CAS  Google Scholar 

  73. Belema Bedada, F., Technau, A., Ebelt, H., Schulze, M., & Braun, T. (2005). Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells. Molecular Biology of The Cell, 25, 9509–9519.

    Article  CAS  Google Scholar 

  74. Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., & Dzau, V. J. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9, 1195–1201.

    Article  PubMed  CAS  Google Scholar 

  75. Tang, Y. L., Tang, Y., Zhang, Y. C., Qian, K., Shen, L., & Phillips, M. I. (2005). Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. Journal of The American College of Cardiology, 46, 1339–1350.

    Article  PubMed  CAS  Google Scholar 

  76. Keith, B., & Simon, M. C. (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell, 129, 465–472.

    Article  PubMed  CAS  Google Scholar 

  77. Rochefort, G. Y., Delorme, B., Lopez, A., Herault, O., Bonnet, P., Charbord, P., Eder, V., & Domenech, J. (2006). Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells, 24, 2202–2208.

    Article  PubMed  CAS  Google Scholar 

  78. Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., & Taylor, D. A. (2008). Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14, 213–221.

    Article  PubMed  CAS  Google Scholar 

  79. Hoffman, E. P., Brown Jr., R. H., & Kunkel, L. M. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell, 51, 919–928.

    Article  PubMed  CAS  Google Scholar 

  80. Abmayr, S., Gregorevic, P., Allen, J. M., & Chamberlain, J. S. (2005). Phenotypic improvement of dystrophic muscles by rAAV/microdystrophin vectors is augmented by Igf1 codelivery. Molecular Therapy, 12, 441–450.

    Article  PubMed  CAS  Google Scholar 

  81. Ervasti, J. M., & Campbell, K. P. (1991). Membrane organization of the dystrophin–glycoprotein complex. Cell, 66, 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  82. Yasuda, S., Townsend, D., Michele, D. E., Favre, E. G., Day, S. M., & Metzger, J. M. (2005). Dystrophic heart failure blocked by membrane sealant poloxamer. Nature, 436, 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  83. Clarke, M. S., & McNeil, P. L. (1992). Syringe loading introduces macromolecules into living mammalian cell cytosol. Journal of Cell Science, 102(Pt 3), 533–541.

    PubMed  CAS  Google Scholar 

  84. Lee, R. C., River, L. P., Pan, F. S., Ji, L., & Wollmann, R. L. (1992). Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proceedings of the National Academy of Sciences of the United States of America, 89, 4524–4528.

    Article  PubMed  CAS  Google Scholar 

  85. Togo, T., Alderton, J. M., Bi, G. Q., & Steinhardt, R. A. (1999). The mechanism of facilitated cell membrane resealing. Journal of Cell Science, 112(Pt 5), 719–731.

    PubMed  CAS  Google Scholar 

  86. Murhammer, D. W., & Goochee, C. F. (1990). Structural features of nonionic polyglycol polymer molecules responsible for the protective effect in sparged animal cell bioreactors. Biotechnology Progress, 6, 142–148.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Funding by NIH, MDA, FEDS and AHA

Disclosures

JMM is on the scientific advisory board and holds equity in Phrixus Pharmaceuticals Inc, a company developing novel therapeutics for heart failure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Metzger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, I., Belema-Bedada, F., Martindale, J. et al. Molecular Cardiology in Translation: Gene, Cell and Chemical-Based Experimental Therapeutics for the Failing Heart. J. of Cardiovasc. Trans. Res. 1, 317–327 (2008). https://doi.org/10.1007/s12265-008-9065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-008-9065-6

Keywords

Navigation