Skip to main content
Log in

Interaction Between Memory Load and Experimental Design on Brain Connectivity and Network Topology

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The conventional approach to investigating functional connectivity in the block-designed study usually concatenates task blocks or employs residuals of task activation. While providing many insights into brain functions, the block design adds more manipulation in functional network analysis that may reduce the purity of the blood oxygenation level-dependent signal. Recent studies utilized one single long run for task trials of the same condition, the so-called continuous design, to investigate functional connectivity based on task functional magnetic resonance imaging. Continuous brain activities associated with the single-task condition can be directly utilized for task-related functional connectivity assessment, which has been examined for working memory, sensory, motor, and semantic task experiments in previous research. But it remains unclear how the block and continuous design influence the assessment of task-related functional connectivity networks. This study aimed to disentangle the separable effects of block/continuous design and working memory load on task-related functional connectivity networks, by using repeated-measures analysis of variance. Across 50 young healthy adults, behavioral results of accuracy and reaction time showed a significant main effect of design as well as interaction between design and load. Imaging results revealed that the cingulo-opercular, fronto-parietal, and default model networks were associated with not only task activation, but significant main effects of design and load as well as their interaction on intra- and inter-network functional connectivity and global network topology. Moreover, a significant behavior-brain association was identified for the continuous design. This work has extended the evidence that continuous design can be used to study task-related functional connectivity and subtle brain-behavioral relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. D’Esposito M, Ballard D, Zarahn E, Aguirre GK. The role of prefrontal cortex in sensory memory and motor preparation: An event-related fMRI study. Neuroimage 2000, 11: 400–408.

    Article  PubMed  Google Scholar 

  2. Rypma B, Prabhakaran V, Desmond JE, Glover GH, Gabrieli JD. Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage 1999, 9: 216–226.

    Article  CAS  PubMed  Google Scholar 

  3. Bandettini PA. MRI studies of brain activation: Dynamic characteristics. Funct MRI Brain 1993, 144–151.

  4. Dale AM, Buckner RL. Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 1997, 5: 329–340.

    Article  CAS  PubMed  Google Scholar 

  5. Friston KJ, Zarahn E, Josephs O, Henson RN, Dale AM. Stochastic designs in event-related fMRI. Neuroimage 1999, 10: 607–619.

    Article  CAS  PubMed  Google Scholar 

  6. Petersen SE, Dubis JW. The mixed block/event-related design. Neuroimage 2012, 62: 1177–1184.

    Article  PubMed  Google Scholar 

  7. Donaldson DI. Parsing brain activity with fMRI and mixed designs: What kind of a state is neuroimaging in? Trends Neurosci 2004, 27: 442–444.

    Article  CAS  PubMed  Google Scholar 

  8. Donaldson DI, Buckner RL. Effective paradigm design. In: Functional MRI: An Introduction to Methods. Oxford: Oxford University Press, 2001. https://doi.org/10.1093/acprof:oso/9780192630711.003.0009

  9. Maccotta L, Zacks JM, Buckner RL. Rapid self-paced event-related functional MRI: Feasibility and implications of stimulus- versus response-locked timing. Neuroimage 2001, 14: 1105–1121.

    Article  CAS  PubMed  Google Scholar 

  10. Meltzer JA, Negishi M, Constable RT. Biphasic hemodynamic responses influence deactivation and may mask activation in block-design fMRI paradigms. Hum Brain Mapp 2008, 29: 385–399.

    Article  PubMed  Google Scholar 

  11. Ollinger JM, Shulman GL, Corbetta M. Separating processes within a trial in event-related functional MRI I. The Method. Neuroimage 2001, 13: 210–217.

    Article  CAS  PubMed  Google Scholar 

  12. Yarkoni T, Speer NK, Balota DA, McAvoy MP, Zacks JM. Pictures of a thousand words: Investigating the neural mechanisms of reading with extremely rapid event-related fMRI. Neuroimage 2008, 42: 973–987.

    Article  PubMed  Google Scholar 

  13. Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NUF, Wenger KK. A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. Neuroimage 2007, 35: 396–405.

    Article  PubMed  Google Scholar 

  14. Cole MW, Ito T, Schultz D, Mill R, Chen R, Cocuzza C. Task activations produce spurious but systematic inflation of task functional connectivity estimates. Neuroimage 2019, 189: 1–18.

    Article  PubMed  Google Scholar 

  15. Kwon S, Watanabe M, Fischer E, Bartels A. Attention reorganizes connectivity across networks in a frequency specific manner. Neuroimage 2017, 144: 217–226.

    Article  PubMed  Google Scholar 

  16. Qiao L, Zhang L, Chen A, Egner T. Dynamic trial-by-trial recoding of task-set representations in the frontoparietal cortex mediates behavioral flexibility. J Neurosci 2017, 37: 11037–11050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic and task-evoked network architectures of the human brain. Neuron 2014, 83: 238–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krienen FM, Yeo BTT, Buckner RL. Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos Trans R Soc Lond B Biol Sci 2014, 369: 20130526.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin SY, Lee CC, Chen YS, Kuo LW. Investigation of functional brain network reconfiguration during vocal emotional processing using graph-theoretical analysis. Soc Cogn Affect Neurosci 2019, 14: 529–538.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Di X, Zhang H, Biswal BB. Anterior cingulate cortex differently modulates frontoparietal functional connectivity between resting-state and working memory tasks. Hum Brain Mapp 2020, 41: 1797–1805.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL, Corbetta M, et al. Function in the human connectome: Task-fMRI and individual differences in behavior. Neuroimage 2013, 80: 169–189.

    Article  PubMed  Google Scholar 

  22. Jimura K, Chushak MS, Westbrook A, Braver TS. Intertemporal decision-making involves prefrontal control mechanisms associated with working memory. Cereb Cortex 2018, 28: 1105–1116.

    Article  PubMed  Google Scholar 

  23. Lamichhane B, Westbrook A, Cole MW, Braver TS. Exploring brain-behavior relationships in the N-back task. Neuroimage 2020, 212: 116683.

    Article  PubMed  Google Scholar 

  24. Biswal BB, Eldreth DA, Motes MA, Rypma B. Task-dependent individual differences in prefrontal connectivity. Cereb Cortex 2010, 20: 2188–2197.

    Article  PubMed  PubMed Central  Google Scholar 

  25. D’Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol 2015, 66: 115–142.

    Article  PubMed  Google Scholar 

  26. Myers NE, Stokes MG, Nobre AC. Prioritizing information during working memory: Beyond sustained internal attention. Trends Cogn Sci 2017, 21: 449–461.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005, 25: 46–59.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klingberg T. Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia 2006, 44: 2171–2177.

    Article  PubMed  Google Scholar 

  29. Taghia J, Cai W, Ryali S, Kochalka J, Nicholas J, Chen T, et al. Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition. Nat Commun 2018, 9: 2505.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wallis G, Stokes M, Cousijn H, Woolrich M, Nobre AC. Frontoparietal and cingulo-opercular networks play dissociable roles in control of working memory. J Cogn Neurosci 2015, 27: 2019–2034.

    Article  PubMed  Google Scholar 

  31. Chen L, Wassermann D, Abrams DA, Kochalka J, Gallardo-Diez G, Menon V. The visual word form area (VWFA) is part of both language and attention circuitry. Nat Commun 2019, 10: 5601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc Natl Acad Sci U S A 2001, 98: 4259–4264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001, 98: 676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: Anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008, 1124: 1–38.

    Article  PubMed  Google Scholar 

  35. Vatansever D, Menon DK, Manktelow AE, Sahakian BJ, Stamatakis EA. Default mode network connectivity during task execution. Neuroimage 2015, 122: 96–104.

    Article  CAS  PubMed  Google Scholar 

  36. Vatansever D, Menon DK, Stamatakis EA. Default mode contributions to automated information processing. Proc Natl Acad Sci U S A 2017, 114: 12821–12826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liang X, Zou Q, He Y, Yang Y. Topologically reorganized connectivity architecture of default-mode, executive-control, and salience networks across working memory task loads. Cereb Cortex 2016, 26: 1501–1511.

    Article  PubMed  Google Scholar 

  38. Yaple Z, Arsalidou M. N-back working memory task: Meta-analysis of normative fMRI studies with children. Child Dev 2018, 89: 2010–2022.

    Article  PubMed  Google Scholar 

  39. Vilà-Balló A, Salmi J, Soveri A, Rodríguez-Fornells A, Lehtonen M, Laine M. Neural signatures for active maintenance and interference during working memory updating. Biol Psychol 2018, 132: 233–243.

    Article  PubMed  Google Scholar 

  40. Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT. Brain connectivity related to working memory performance. J Neurosci 2006, 26: 13338–13343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cohen JR, D’Esposito M. The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci 2016, 36: 12083–12094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zuo N, Yang Z, Liu Y, Li J, Jiang T. Core networks and their reconfiguration patterns across cognitive loads. Hum Brain Mapp 2018, 39: 3546–3557.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bolt T, Nomi JS, Rubinov M, Uddin LQ. Correspondence between evoked and intrinsic functional brain network configurations. Hum Brain Mapp 2017, 38: 1992–2007.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST. Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci U S A 2011, 108: 7641–7646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Betzel RF, Bertolero MA, Bassett DS. Non-assortative community structure in resting and task-evoked functional brain networks. bioRxiv 2018. https://doi.org/10.1101/355016.

  46. Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of individual brain maturity using fMRI. Science 2010, 329: 1358–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Di X, Biswal BB. Toward task connectomics: Examining whole-brain task modulated connectivity in different task domains. Cereb Cortex 2019, 29: 1572–1583.

    Article  PubMed  Google Scholar 

  48. Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain 2009, 132: 2413–2425.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Anderson JS, Druzgal TJ, Lopez-Larson M, Jeong EK, Desai K, Yurgelun-Todd D. Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum Brain Mapp 2011, 32: 919–934.

    Article  PubMed  Google Scholar 

  50. Chang C, Glover GH. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 2009, 47: 1448–1459.

    Article  PubMed  Google Scholar 

  51. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 2009, 44: 893–905.

    Article  PubMed  Google Scholar 

  52. Douw L, Quaak M, Fitzsimmons SMDD, de Wit SJ, van der Werf YD, van den Heuvel OA, et al. Static and dynamic network properties of the repetitive transcranial magnetic stimulation target predict changes in emotion regulation in obsessive-compulsive disorder. Brain Stimul 2020, 13: 318–326.

    Article  PubMed  Google Scholar 

  53. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52: 1059–1069.

    Article  PubMed  Google Scholar 

  54. Newman MEJ. The structure and function of complex networks. SIAM Rev 2003, 45: 167–256.

    Article  Google Scholar 

  55. Finn ES, Huber L, Jangraw DC, Molfese PJ, Bandettini PA. Layer-dependent activity in human prefrontal cortex during working memory. Nat Neurosci 2019, 22: 1687–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 2011, 23: 4022–4037.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, et al. Modelling neural correlates of working memory: A coordinate-based meta-analysis. Neuroimage 2012, 60: 830–846.

    Article  CAS  PubMed  Google Scholar 

  58. Gordon EM, Devaney JM, Bean S, Vaidya CJ. Resting-state striato-frontal functional connectivity is sensitive to DAT1 genotype and predicts executive function. Cereb Cortex 2015, 25: 336–345.

    Article  PubMed  Google Scholar 

  59. Petrides M, Alivisatos B, Meyer E, Evans AC. Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci U S A 1993, 90: 878–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Owen AM, Herrod NJ, Menon DK, Clark JC, Downey SP, Carpenter TA, et al. Redefining the functional organization of working memory processes within human lateral prefrontal cortex. Eur J Neurosci 1999, 11: 567–574.

    Article  CAS  PubMed  Google Scholar 

  61. Funahashi S, Bruce CJ, Goldman-Rakic PS. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas.” J Neurosci 1993, 13: 1479–1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ackerman CM, Courtney SM. Spatial relations and spatial locations are dissociated within prefrontal and parietal cortex. J Neurophysiol 2012, 108: 2419–2429.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zarahn E, Aguirre GK, D’Esposito M. Temporal isolation of the neural correlates of spatial mnemonic processing with fMRI. Brain Res Cogn Brain Res 1999, 7: 255–268.

    Article  CAS  PubMed  Google Scholar 

  64. Haxby JV, Petit L, Ungerleider LG, Courtney SM. Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. Neuroimage 2000, 11: 145–156.

    Article  CAS  PubMed  Google Scholar 

  65. Ullman H, Almeida R, Klingberg T. Structural maturation and brain activity predict future working memory capacity during childhood development. J Neurosci 2014, 34: 1592–1598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Darki F, Klingberg T. The role of fronto-parietal and fronto-striatal networks in the development of working memory: A longitudinal study. Cereb Cortex 2015, 25: 1587–1595.

    Article  PubMed  Google Scholar 

  67. Barch DM, Sheline YI, Csernansky JG, Snyder AZ. Working memory and prefrontal cortex dysfunction: Specificity to schizophrenia compared with major depression. Biol Psychiatry 2003, 53: 376–384.

    Article  PubMed  Google Scholar 

  68. Dove A, Pollmann S, Schubert T, Wiggins CJ, von Cramon DY. Prefrontal cortex activation in task switching: An event-related fMRI study. Brain Res Cogn Brain Res 2000, 9: 103–109.

    Article  CAS  PubMed  Google Scholar 

  69. Sherwood MS, Kane JH, Weisend MP, Parker JG. Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice. Neuroimage 2016, 124: 214–223.

    Article  PubMed  Google Scholar 

  70. Ragland JD, Turetsky BI, Gur RC, Gunning-Dixon F, Turner T, Schroeder L, et al. Working memory for complex figures: An fMRI comparison of letter and fractal n-back tasks. Neuropsychology 2002, 16: 370–379.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Piccoli T, Valente G, Linden DEJ, Re M, Esposito F, Sack AT, et al. The default mode network and the working memory network are not anti-correlated during all phases of a working memory task. PLoS One 2015, 10: e0123354.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liu J, Xia M, Dai Z, Wang X, Liao X, Bi Y, et al. Intrinsic brain hub connectivity underlies individual differences in spatial working memory. Cereb Cortex 2017, 27: 5496–5508.

    PubMed  Google Scholar 

  73. Zhang H, Zhao R, Hu X, Guan S, Margulies DS, Meng C, Biswal BB. Cortical connectivity gradients and local timescales during cognitive states are modulated by cognitive loads. Brain Struct Funct 2022, https://doi.org/10.1007/s00429-022-02564-0.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kitzbichler MG, Henson RNA, Smith ML, Nathan PJ, Bullmore ET. Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 2011, 31: 8259–8270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Magen H, Emmanouil TA. Working memory for self-initiated and provided spatial configurations. Q J Exp Psychol (Hove) 2018, 71: 2186–2206.

    Article  PubMed  Google Scholar 

  76. Milchgrub G, Magen H. Self-initiated spatial working memory in young and older adults. Memory 2018, 26: 712–726.

    Article  PubMed  Google Scholar 

  77. Pergher V, Wittevrongel B, Tournoy J, Schoenmakers B, van Hulle MM. N-back training and transfer effects revealed by behavioral responses and EEG. Brain Behav 2018, 8: e01136.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Church RM, Camp DS. Change in reaction-time as a function of knowledge of results. Am J Psychol 1965, 78: 102–106.

    Article  CAS  PubMed  Google Scholar 

  79. Maylor EA, Rabbitt PM, James GH, Kerr SA. Effects of alcohol, practice, and task complexity on reaction time distributions. Q J Exp Psychol A 1992, 44: 119–139.

    Article  CAS  PubMed  Google Scholar 

  80. Shanks DR, Cameron A. The effect of mental practice on performance in a sequential reaction time task. J Mot Behav 2000, 32: 305–313.

    Article  CAS  PubMed  Google Scholar 

  81. Constantinidis C, Klingberg T. The neuroscience of working memory capacity and training. Nat Rev Neurosci 2016, 17: 438–449.

    Article  CAS  PubMed  Google Scholar 

  82. Peijnenborgh JCAW, Hurks PM, Aldenkamp AP, Vles JSH, Hendriksen JGM. Efficacy of working memory training in children and adolescents with learning disabilities: A review study and meta-analysis. Neuropsychol Rehabil 2016, 26: 645–672.

    Article  PubMed  Google Scholar 

  83. Schwaighofer M, Fischer F, Bühner M. Does working memory training transfer? A meta-analysis including training conditions as moderators. Educ Psychol 2015, 50: 138–166.

    Article  Google Scholar 

  84. de Baene W, Brass M. Cue-switch effects do not rely on the same neural systems as task-switch effects. Cogn Affect Behav Neurosci 2011, 11: 600–607.

    Article  PubMed  Google Scholar 

  85. Loose LS, Wisniewski D, Rusconi M, Goschke T, Haynes JD. Switch-independent task representations in frontal and parietal cortex. J Neurosci 2017, 37: 8033–8042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Benton AL, Blackburn HL. Practice effects in reaction-time tasks in brain-injured patients. J Abnorm Psychol 1957, 54: 109–113.

    CAS  PubMed  Google Scholar 

  87. Küper M, Kaschani P, Thürling M, Stefanescu MR, Burciu RG, Göricke S, et al. Cerebellar fMRI activation increases with increasing working memory demands. Cerebellum 2016, 15: 322–335.

    Article  PubMed  Google Scholar 

  88. Kübler A, Murphy K, Kaufman J, Stein EA, Garavan H. Co-ordination within and between verbal and visuospatial working memory: Network modulation and anterior frontal recruitment. Neuroimage 2003, 20: 1298–1308.

    Article  PubMed  Google Scholar 

  89. Klaassen EB, Evers EAT, de Groot RHM, Backes WH, Veltman DJ, Jolles J. Working memory in middle-aged males: Age-related brain activation changes and cognitive fatigue effects. Biol Psychol 2014, 96: 134–143.

    Article  PubMed  Google Scholar 

  90. Jain S, Nataraja NP. The effect of fatigue on working memory and auditory perceptual abilities in trained musicians. Am J Audiol 2019, 28: 483–494.

    Article  PubMed  Google Scholar 

  91. Konishi S, Donaldson DI, Buckner RL. Transient activation during block transition. Neuroimage 2001, 13: 364–374.

    Article  CAS  PubMed  Google Scholar 

  92. Paret C, Kluetsch R, Ruf M, Demirakca T, Kalisch R, Schmahl C, et al. Transient and sustained BOLD signal time courses affect the detection of emotion-related brain activation in fMRI. Neuroimage 2014, 103: 522–532.

    Article  PubMed  Google Scholar 

  93. Song XW, Bhinge S, Quiton RL, Adalı T. An ICA based approach for steady-state and transient analysis of task fMRI data: Application to study of thermal pain response. J Neurosci Methods 2019, 326: 108356.

    Article  PubMed  Google Scholar 

  94. Fox MD, Snyder AZ, Barch DM, Gusnard DA, Raichle ME. Transient BOLD responses at block transitions. Neuroimage 2005, 28: 956–966.

    Article  PubMed  Google Scholar 

  95. Pedersen M, Omidvarnia A, Shine JM, Jackson GD, Zalesky A. Reducing the influence of intramodular connectivity in participation coefficient. Netw Neurosci 2020, 4: 416–431.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chen Q, Turnbull A, Cole M, Zhang Z, Lin FV. Enhancing cortical network-level participation coefficient as a potential mechanism for transfer in cognitive training in aMCI. Neuroimage 2022, 254: 119124.

    Article  PubMed  Google Scholar 

  97. Han K, Chapman SB, Krawczyk DC. Cognitive training reorganizes network modularity in traumatic brain injury. Neurorehabil Neural Repair 2020, 34: 26–38.

    Article  PubMed  Google Scholar 

  98. Cowan N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav Brain Sci 2001, 24: 87–114 (discussion 114–85).

    Article  CAS  PubMed  Google Scholar 

  99. Blokland GAM, McMahon KL, Hoffman J, Zhu G, Meredith M, Martin NG, et al. Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study. Biol Psychol 2008, 79: 70–79.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 2013, 83: 550–558.

    Article  PubMed  Google Scholar 

  101. Termenon M, Jaillard A, Delon-Martin C, Achard S. Reliability of graph analysis of resting state fMRI using test-retest dataset from the Human Connectome Project. Neuroimage 2016, 142: 172–187.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all participants in the study. This work was supported by the National Natural Science Foundation of China (62071109 and 61871420) and the Provincial Natural Science Foundation of Sichuan (2022NSFSC0504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Meng or Bharat Biswal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 647 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Di, X., Rypma, B. et al. Interaction Between Memory Load and Experimental Design on Brain Connectivity and Network Topology. Neurosci. Bull. 39, 631–644 (2023). https://doi.org/10.1007/s12264-022-00982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00982-y

Keywords