Skip to main content
Log in

Modulation of Beta Oscillations for Implicit Motor Timing in Primate Sensorimotor Cortex during Movement Preparation

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Motor timing is an important part of sensorimotor control. Previous studies have shown that beta oscillations embody the process of temporal perception in explicit timing tasks. In contrast, studies focusing on beta oscillations in implicit timing tasks are lacking. In this study, we set up an implicit motor timing task and found a modulation pattern of beta oscillations with temporal perception during movement preparation. We trained two macaques in a repetitive visually-guided reach-to-grasp task with different holding intervals. Spikes and local field potentials were recorded from microelectrode arrays in the primary motor cortex, primary somatosensory cortex, and posterior parietal cortex. We analyzed the association between beta oscillations and temporal interval in fixed-duration experiments (500 ms as the Short Group and 1500 ms as the Long Group) and random-duration experiments (500 ms to 1500 ms). The results showed that the peak beta frequencies in both experiments ranged from 15 Hz to 25 Hz. The beta power was higher during the hold period than the movement (reach and grasp) period. Further, in the fixed-duration experiments, the mean power as well as the maximum rate of change of beta power in the first 300 ms were higher in the Short Group than in the Long Group when aligned with the Center Hit event. In contrast, in the random-duration experiments, the corresponding values showed no statistical differences among groups. The peak latency of beta power was shorter in the Short Group than in the Long Group in the fixed-duration experiments, while no consistent modulation pattern was found in the random-duration experiments. These results indicate that beta oscillations can modulate with temporal interval in their power mode. The synchronization period of beta power could reflect the cognitive set maintaining working memory of the temporal structure and attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci 2013, 36: 313–336.

    Article  CAS  PubMed  Google Scholar 

  2. Heys JG, Dombeck DA. Evidence for a subcircuit in medial entorhinal cortex representing elapsed time during immobility. Nat Neurosci 2018, 21: 1574–1582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bortoletto M, Cook A, Cunnington R. Motor timing and the preparation for sequential actions. Brain Cogn 2011, 75: 196–204.

    Article  PubMed  Google Scholar 

  4. Sohn MH, Carlson RA. Implicit temporal tuning of working memory strategy during cognitive skill acquisition. Am J Psychol 2003, 116: 239–256.

    Article  PubMed  Google Scholar 

  5. Gallistel CR, Gibbon J. Time, rate, and conditioning. Psychol Rev 2000, 107: 289–344.

    Article  CAS  PubMed  Google Scholar 

  6. Barclay JL, Tsang AH, Oster H. Interaction of central and peripheral clocks in physiological regulation. Prog Brain Res 2012, 199: 163–181.

    Article  CAS  PubMed  Google Scholar 

  7. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 2012, 35: 445–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li S, Wang Y, Wang F, Hu LF, Liu CF. A new perspective for Parkinson’s disease: circadian rhythm. Neurosci Bull 2017, 33: 62–72.

    Article  CAS  PubMed  Google Scholar 

  9. de Hemptinne C, Ivanoiu A, Lefèvre P, Missal M. How does Parkinson’s disease and aging affect temporal expectation and the implicit timing of eye movements? Neuropsychologia 2013, 51: 340–348.

    Article  PubMed  Google Scholar 

  10. Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D, et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 2009, 8: 791–801.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Martino D, Lagravinese G, Pelosin E, Chaudhuri RK, Vicario CM, Abbruzzese G, et al. Temporal processing of perceived body movement in cervical dystonia. Mov Disord 2015, 30: 1005–1007.

    Article  PubMed  Google Scholar 

  12. Vicario CM, Gulisano M, Martino D, Rizzo R. Timing recalibration in childhood Tourette syndrome associated with persistent pimozide treatment. J Neuropsychol 2016, 10: 211–222.

    Article  PubMed  Google Scholar 

  13. Stein J, Walsh V. To see but not to read; the magnocellular theory of dyslexia. Trends Neurosci 1997, 20: 147–152.

    Article  CAS  PubMed  Google Scholar 

  14. Toplak ME, Tannock R. Time perception: modality and duration effects in attention-deficit/hyperactivity disorder (ADHD). J Abnorm Child Psychol 2005, 33: 639–654.

    Article  PubMed  Google Scholar 

  15. Penney TB, Meck WH, Roberts SA, Gibbon J, Erlenmeyer-Kimling L. Interval-timing deficits in individuals at high risk for schizophrenia. Brain Cogn 2005, 58: 109–118.

    Article  PubMed  Google Scholar 

  16. Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol 2008, 18: 137–144.

    Article  CAS  PubMed  Google Scholar 

  17. Grahn JA, Brett M. Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci 2007, 19: 893–906.

    Article  PubMed  Google Scholar 

  18. Merchant H, Zarco W, Perez O, Prado L, Bartolo R. Measuring time with different neural chronometers during a synchronization-continuation task. Proc Natl Acad Sci USA 2011, 108: 19784–19789.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Merchant H, Bartolo R. Primate beta oscillations and rhythmic behaviors. J Neural Transm (Vienna) 2018,125:461–470.

    Article  Google Scholar 

  20. Brody CD, Hernández A, Zainos A, Romo R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb Cortex 2003, 13: 1196–1207.

    Article  PubMed  Google Scholar 

  21. Lucchetti C, Ulrici A, Bon L. Dorsal premotor areas of nonhuman primate: functional flexibility in time domain. Eur J Appl Physiol 2005, 95: 121–130.

    Article  PubMed  Google Scholar 

  22. Mauritz KH, Wise SP. Premotor cortex of the rhesus monkey: neuronal activity in anticipation of predictable environmental events. Exp Brain Res 1986, 61: 229–244.

    Article  CAS  PubMed  Google Scholar 

  23. Romo R, Schultz W. Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex. Exp Brain Res 1987, 67: 656–662.

    Article  CAS  PubMed  Google Scholar 

  24. Roux S, Coulmance M, Riehle A. Context-related representation of timing processes in monkey motor cortex. Eur J Neurosci 2003, 18: 1011–1016.

    Article  PubMed  Google Scholar 

  25. Lebedev MA, O’Doherty JE, Nicolelis MA. Decoding of temporal intervals from cortical ensemble activity. J Neurophysiol 2008, 99: 166–186.

    Article  PubMed  Google Scholar 

  26. Janssen P, Shadlen MN. A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 2005, 8: 234–241.

    Article  CAS  PubMed  Google Scholar 

  27. Leon MI, Shadlen MN. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 2003, 38: 317–327.

    Article  CAS  PubMed  Google Scholar 

  28. Schall JD. Neural basis of deciding, choosing and acting. Nat Rev Neurosci 2001, 2: 33–42.

    Article  CAS  PubMed  Google Scholar 

  29. Crowe DA, Zarco W, Bartolo R, Merchant H. Dynamic representation of the temporal and sequential structure of rhythmic movements in the primate medial premotor cortex. J Neurosci 2014, 34: 11972–11983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perez H, Cordova-Fraga T, Lopez-Briones S, Martinez-Espinosa JC, Rosas EF, Espinoza A, et al. Portable device for magnetic stimulation: assessment survival and proliferation in human lymphocytes. Rev Sci Instrum 2013, 84: 094701.

    Article  CAS  PubMed  Google Scholar 

  31. Merchant H, Perez O, Bartolo R, Mendez JC, Mendoza G, Gamez J, et al. Sensorimotor neural dynamics during isochronous tapping in the medial premotor cortex of the macaque. Eur J Neurosci 2015, 41: 586–602.

    Article  PubMed  Google Scholar 

  32. Mello GB, Soares S, Paton JJ. A scalable population code for time in the striatum. Curr Biol 2015, 25: 1113–1122.

    Article  CAS  PubMed  Google Scholar 

  33. Gouvea TS, Monteiro T, Motiwala A, Soares S, Machens C, Paton JJ. Striatal dynamics explain duration judgments. Elife 2015, 4.e11386

    PubMed  Google Scholar 

  34. Merchant H, Bartolo R, Pérez O, Méndez JC, Mendoza G, Gámez J, et al. Neurophysiology of timing in the hundreds of milliseconds: multiple layers of neuronal clocks in the medial premotor areas. Adv Exp Med Biol 2014, 829: 143–154.

    Article  PubMed  Google Scholar 

  35. Wright BA, Buonomano DV, Mahncke HW, Merzenich MM. Learning and generalization of auditory temporal-interval discrimination in humans. J Neurosci 1997, 17: 3956–3963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bartolo R, Merchant H. Learning and generalization of time production in humans: rules of transfer across modalities and interval durations. Exp Brain Res 2009, 197: 91–100.

    Article  PubMed  Google Scholar 

  37. Merchant H, Grahn J, Trainor L, Rohrmeier M, Fitch WT. Finding the beat: a neural perspective across humans and non-human primates. Philos Trans R Soc Lond B Biol Sci 2015, 370: 20140093.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fujioka T, Trainor LJ, Large EW, Ross B. Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann N Y Acad Sci 2009, 1169: 89–92.

    Article  PubMed  Google Scholar 

  39. Iversen JR, Repp BH, Patel AD. Top-down control of rhythm perception modulates early auditory responses. Ann N Y Acad Sci 2009, 1169: 58–73.

    Article  PubMed  Google Scholar 

  40. Fujioka T, Trainor LJ, Large EW, Ross B. Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci 2012, 32: 1791–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujioka T, Ross B, Trainor LJ. Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery. J Neurosci 2015, 35: 15187–15198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Merchant H, Bartolo R, Perez O, Mendez JC, Mendoza G, Gamez J, et al. Neurophysiology of timing in the hundreds of milliseconds: multiple layers of neuronal clocks in the medial premotor areas. Adv Exp Med Biol 2014, 829: 143–154.

    Article  PubMed  Google Scholar 

  43. Wiener M, Turkeltaub PE, Coslett HB. Implicit timing activates the left inferior parietal cortex. Neuropsychologia 2010, 48: 3967–3971.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ma C, Ma X, Fan J, He J. Neurons in primary motor cortex encode hand orientation in a reach-to-grasp task. Neurosci Bull 2017, 33: 383–395.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bremner LR, Andersen RA. Temporal analysis of reference frames in parietal cortex area 5d during reach planning. J Neurosci 2014, 34: 5273–5284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reed JL, Pouget P, Qi HX, Zhou Z, Bernard MR, Burish MJ, et al. Widespread spatial integration in primary somatosensory cortex. Proc Natl Acad Sci U S A 2008, 105: 10233–10237.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Seelke AM, Padberg JJ, Disbrow E, Purnell SM, Recanzone G, Krubitzer L. Topographic maps within brodmann’s area 5 of macaque monkeys. Cereb Cortex 2012, 22: 1834–1850.

    Article  PubMed  Google Scholar 

  48. Wang L, Li X, Hsiao SS, Bodner M, Lenz F, Zhou YD. Behavioral choice-related neuronal activity in monkey primary somatosensory cortex in a haptic delay task. J Cogn Neurosci 2012, 24: 1634–1644.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang P, Ma X, Chen L, Zhou J, Wang C, Li W, et al. Decoder calibration with ultra small current sample set for intracortical brain-machine interface. J Neural Eng 2018, 15: 026019.

    Article  PubMed  Google Scholar 

  50. Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP Chronux a platform for analyzing neural signals. J Neurosci Methods 2010, 192: 146–151.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kilavik BE, Ponce-Alvarez A, Trachel R, Confais J, Takerkart S, Riehle A. Context-related frequency modulations of macaque motor cortical LFP beta oscillations. Cereb Cortex 2012, 22: 2148–2159.

    Article  PubMed  Google Scholar 

  52. Kilavik BE, Zaepffel M, Brovelli A, MacKay WA, Riehle A. The ups and downs of beta oscillations in sensorimotor cortex. Exp Neurol 2013, 245: 15–26.

    Article  PubMed  Google Scholar 

  53. Kilavik BE, Confais J, Riehle A. Signs of timing in motor cortex during movement preparation and cue anticipation. Adv Exp Med Biol 2014, 829: 121–142.

    Article  PubMed  Google Scholar 

  54. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 1999, 110: 1842–1857.

  55. Pfurtscheller G, Neuper C, Andrew C, Edlinger G. Foot and hand area mu rhythms. Int J Psychophysiol 1997, 26: 121–135.

    Article  CAS  PubMed  Google Scholar 

  56. Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neurosci Lett 1997, 239: 65–68.

    Article  CAS  PubMed  Google Scholar 

  57. Kuhn AA, Williams D, Kupsch A, Limousin P, Hariz M, Schneider GH, et al. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 2004, 127: 735–746.

    Article  PubMed  Google Scholar 

  58. Lee JH, Whittington MA, Kopell NJ. Top-down beta rhythms support selective attention via interlaminar interaction: a model. PLoS Comput Biol 2013, 9: e1003164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kopell N, Ermentrout GB, Whittington MA, Traub RD. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci U S A 2000, 97: 1867–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deiber MP, Missonnier P, Bertrand O, Gold G, Fazio-Costa L, Ibanez V, et al. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics. J Cogn Neurosci 2007, 19: 158–172.

    Article  PubMed  Google Scholar 

  61. Siegel M, Warden MR, Miller EK. Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci U S A 2009, 106: 21341–21346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bartolo R, Prado L, Merchant H. Information processing in the primate basal ganglia during sensory-guided and internally driven rhythmic tapping. J Neurosci 2014, 34: 3910–3923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63. Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol 2012, 63: 1–29.

    Article  PubMed  Google Scholar 

  64. Halsband U, Lange RK. Motor learning in man: a review of functional and clinical studies. J Physiol Paris 2006, 99: 414–424.

    Article  PubMed  Google Scholar 

  65. Miyachi S, Hirata Y, Inoue K, Lu X, Nambu A, Takada M. Multisynaptic projections from the ventrolateral prefrontal cortex to hand and mouth representations of the monkey primary motor cortex. Neurosci Res 2013, 76: 141–149.

    Article  PubMed  Google Scholar 

  66. Tomasino B, Gremese M. The cognitive side of M1. Front Hum Neurosci 2016, 10: 298.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rossi-Pool R, Salinas E, Zainos A, Alvarez M, Vergara J, Parga N, et al. Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli. Proc Natl Acad Sci U S A 2016, 113: E7966–E7975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao D, Zhou YD, Bodner M, Ku Y. The causal role of the prefrontal cortex and somatosensory cortex in tactile working memory. Cereb Cortex 2017, 28: 1–10.

    CAS  Google Scholar 

  69. Gogulski J, Zetter R, Nyrhinen M, Pertovaara A, Carlson S. Neural substrate for metacognitive accuracy of tactile working memory. Cereb Cortex 2017, 27: 5343–5352.

    Article  PubMed  Google Scholar 

  70. Murray JD, Jaramillo J, Wang XJ. Working memory and decision-making in a frontoparietal circuit model. J Neurosci 2017, 37: 12167–12186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pisella L. Visual perception is dependent on visuospatial working memory and thus on the posterior parietal cortex. Ann Phys Rehabil Med 2017, 60: 141–147.

    Article  PubMed  Google Scholar 

  72. Birba A, Hesse E, Sedeno L, Mikulan EP, Garcia MDC, Avalos J, et al. Enhanced working memory binding by direct electrical stimulation of the parietal cortex. Front Aging Neurosci 2017, 9: 178.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73. Martinez-Vazquez P, Gail A. Directed interaction between monkey premotor and posterior parietal cortex during motor-goal retrieval from working memory. Cereb Cortex 2018, 28: 1866–1881.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Engel AK, Fries P. Beta-band oscillations–signalling the status quo? Curr Opin Neurobiol 2010, 20: 156–165.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang YY, Xu L, Liang ZY, Wang K, Hou B, Zhou Y, et al. Separate neural networks for gains and losses in intertemporal choice. Neurosci Bull 2018, 34: 725–735.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dotson NM, Hoffman SJ, Goodell B, Gray CM. A large-scale semi-chronic microdrive recording system for non-human primates. Neuron 2017, 96: 769–782 e762.

    Google Scholar 

  77. Barnett L, Seth AK. The MVGC multivariate granger causality toolbox: a new approach to granger-causal inference. J Neurosci Methods 2014, 223: 50–68.

    Article  PubMed  Google Scholar 

  78. Sheikhattar A, Miran S, Liu J, Fritz JB, Shamma SA, Kanold PO, et al. Extracting neuronal functional network dynamics via adaptive Granger causality analysis. Proc Natl Acad Sci USA 2018, 115: E3869–E3878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Cooperation and Exchange of the National Natural Science Foundation of China (31320103914), the General Program of the National Natural Science Foundation of China (31370987), the National Natural Science Foundation of China for Outstanding Young Scholars (81622027), the Beijing Nova Program of China (2016B615), and the National Basic Research Development Program of China (2017YFA0106100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Zhou or Changyong Wang.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Ma, X., Tang, L. et al. Modulation of Beta Oscillations for Implicit Motor Timing in Primate Sensorimotor Cortex during Movement Preparation. Neurosci. Bull. 35, 826–840 (2019). https://doi.org/10.1007/s12264-019-00387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-019-00387-4

Keywords

Navigation