Skip to main content
Log in

Age-Related Reduction in Cortical Thickness in First-Episode Treatment-Naïve Patients with Schizophrenia

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Substantial evidence supports the neurodevelopmental hypothesis of schizophrenia. Meanwhile, progressive neurodegenerative processes have also been reported, leading to the hypothesis that neurodegeneration is a characteristic component in the neuropathology of schizophrenia. However, a major challenge for the neurodegenerative hypothesis is that antipsychotic drugs used by patients have profound impact on brain structures. To clarify this potential confounding factor, we measured the cortical thickness across the whole brain using high-resolution T1-weighted magnetic resonance imaging in 145 first-episode and treatment-naïve patients with schizophrenia and 147 healthy controls. The results showed that, in the patient group, the frontal, temporal, parietal, and cingulate gyri displayed a significant age-related reduction of cortical thickness. In the control group, age-related cortical thickness reduction was mostly located in the frontal, temporal, and cingulate gyri, albeit to a lesser extent. Importantly, relative to healthy controls, patients exhibited a significantly smaller age-related cortical thickness in the anterior cingulate, inferior temporal, and insular gyri in the right hemisphere. These results provide evidence supporting the existence of neurodegenerative processes in schizophrenia and suggest that these processes already occur in the early stage of the illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Insel TR. Rethinking schizophrenia. Nature 2010, 468: 187–193.

    Article  CAS  PubMed  Google Scholar 

  2. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987, 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  3. Murray RM, Lewis SW. Is schizophrenia a neurodevelopmental disorder? Br Med J (Clin Res Ed) 1987, 295: 681–682.

    Article  CAS  Google Scholar 

  4. Zhao X, Tian L, Yan J, Yue W, Yan H, Zhang D. Abnormal rich-club organization associated with compromised cognitive function in patients with schizophrenia and their unaffected parents. Neurosci Bull 2017, 33: 445–454.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fenton WS, McGlashan TH. Antecedents, symptom progression, and long-term outcome of the deficit syndrome in schizophrenia. Am J Psychiatry 1994, 151: 351–356.

    Article  CAS  PubMed  Google Scholar 

  6. Loebel AD, Lieberman JA, Alvir JM, Mayerhoff DI, Geisler SH, Szymanski SR. Duration of psychosis and outcome in first-episode schizophrenia. Am J Psychiatry 1992, 149: 1183–1188.

    Article  CAS  PubMed  Google Scholar 

  7. Wyatt RJ. Neuroleptics and the natural course of schizophrenia. Schizophr Bull 1991, 17: 325–351.

    Article  CAS  PubMed  Google Scholar 

  8. Cahn W, Hulshoff Pol HE, Lems EB, van Haren NE, Schnack HG, van der Linden JA, et al. Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. Arch Gen Psychiatry 2002, 59: 1002–1010.

    Article  PubMed  Google Scholar 

  9. DeLisi LE, Tew W, Xie S, Hoff AL, Sakuma M, Kushner M, et al. A prospective follow-up study of brain morphology and cognition in first-episode schizophrenic patients: preliminary findings. Biol Psychiatry 1995, 38: 349–360.

    Article  CAS  PubMed  Google Scholar 

  10. DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R. Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Res 1997, 74: 129–140.

    Article  CAS  PubMed  Google Scholar 

  11. Whitford TJ, Grieve SM, Farrow TF, Gomes L, Brennan J, Harris AW, et al. Progressive grey matter atrophy over the first 2-3 years of illness in first-episode schizophrenia: a tensor-based morphometry study. Neuroimage 2006, 32: 511–519.

    Article  PubMed  Google Scholar 

  12. Ho BC, Andreasen NC, Nopoulos P, Arndt S, Magnotta V, Flaum M. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry 2003, 60: 585–594.

    Article  PubMed  Google Scholar 

  13. Kasai K, Shenton ME, Salisbury DF, Hirayasu Y, Lee CU, Ciszewski AA, et al. Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry 2003, 160: 156–164.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A. Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 2001, 58: 148–157.

    Article  CAS  PubMed  Google Scholar 

  15. Jacobsen LK, Giedd JN, Castellanos FX, Vaituzis AC, Hamburger SD, Kumra S, et al. Progressive reduction of temporal lobe structures in childhood-onset schizophrenia. Am J Psychiatry 1998, 155: 678–685.

    Article  CAS  PubMed  Google Scholar 

  16. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci U S A 2001, 98: 11650–11655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Keller A, Castellanos FX, Vaituzis AC, Jeffries NO, Giedd JN, Rapoport JL. Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry 2003, 160: 128–133.

    Article  PubMed  Google Scholar 

  18. Sporn AL, Greenstein DK, Gogtay N, Jeffries NO, Lenane M, Gochman P, et al. Progressive brain volume loss during adolescence in childhood-onset schizophrenia. Am J Psychiatry 2003, 160: 2181–2189.

    Article  PubMed  Google Scholar 

  19. van Haren NE, Schnack HG, Cahn W, van den Heuvel MP, Lepage C, Collins L, et al. Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry 2011, 68: 871–880.

    Article  PubMed  Google Scholar 

  20. Xie T, Zhang X, Tang X, Zhang H, Yu M, Gong G, et al. Mapping convergent and divergent cortical thinning patterns in patients with deficit and nondeficit schizophrenia. Schizophr Bull 2019, 45: 211–221.

    Article  PubMed  Google Scholar 

  21. Buchy L, Makowski C, Malla A, Joober R, Lepage M. A longitudinal study of cognitive insight and cortical thickness in first-episode psychosis. Schizophr Res 2018, 193: 251–260.

    Article  PubMed  Google Scholar 

  22. Wiegand LC, Warfield SK, Levitt JJ, Hirayasu Y, Salisbury DF, Heckers S, et al. Prefrontal cortical thickness in first-episode psychosis: a magnetic resonance imaging study. Biol Psychiatry 2004, 55: 131–140.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rais M, Cahn W, Schnack HG, Hulshoff Pol HE, Kahn RS, van Haren NE. Brain volume reductions in medication-naive patients with schizophrenia in relation to intelligence quotient. Psychol Med 2012, 42: 1847–1856.

    Article  CAS  PubMed  Google Scholar 

  24. Lieberman JA. Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 1999, 46: 729–739.

    Article  CAS  PubMed  Google Scholar 

  25. Meyer-Lindenberg A. Neuroimaging and the question of neurodegeneration in schizophrenia. Prog Neurobiol 2011, 95: 514–516.

    Article  PubMed  Google Scholar 

  26. Snitz BE, MacDonald A 3rd, Cohen JD, Cho RY, Becker T, Carter CS. Lateral and medial hypofrontality in first-episode schizophrenia: functional activity in a medication-naive state and effects of short-term atypical antipsychotic treatment. Am J Psychiatry 2005, 162: 2322–2329.

    Article  PubMed  Google Scholar 

  27. Gur RE, Maany V, Mozley PD, Swanson C, Bilker W, Gur RC. Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiatry 1998, 155: 1711–1717.

    Article  CAS  PubMed  Google Scholar 

  28. Ebdrup BH, Skimminge A, Rasmussen H, Aggernaes B, Oranje B, Lublin H, et al. Progressive striatal and hippocampal volume loss in initially antipsychotic-naive, first-episode schizophrenia patients treated with quetiapine: relationship to dose and symptoms. Int J Neuropsychopharmacol 2011, 14: 69–82.

    Article  CAS  PubMed  Google Scholar 

  29. Tost H, Braus DF, Hakimi S, Ruf M, Vollmert C, Hohn F, et al. Acute D2 receptor blockade induces rapid, reversible remodelling in human cortical-striatal circuits. Nat Neurosci 2010, 13: 920–922.

    Article  CAS  PubMed  Google Scholar 

  30. Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry 2011, 68: 128–137.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lewis DA. Antipsychotic medications and brain volume: do we have cause for concern? Arch Gen Psychiatry 2011, 68: 126–127.

    Article  PubMed  Google Scholar 

  32. Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, et al. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 2003, 60: 878–888.

    Article  PubMed  Google Scholar 

  33. Nesvag R, Lawyer G, Varnas K, Fjell AM, Walhovd KB, Frigessi A, et al. Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 2008, 98: 16–28.

    Article  PubMed  Google Scholar 

  34. Kubota M, Miyata J, Yoshida H, Hirao K, Fujiwara H, Kawada R, et al. Age-related cortical thinning in schizophrenia. Schizophr Res 2011, 125: 21–29.

    Article  PubMed  Google Scholar 

  35. Jessen K, Rostrup E, Mandl RCW, Nielsen MO, Bak N, Fagerlund B, et al. Cortical structures and their clinical correlates in antipsychotic-naive schizophrenia patients before and after 6 weeks of dopamine D2/3 receptor antagonist treatment. Psychol Med 2018: 1–10.

  36. Leung M, Cheung C, Yu K, Yip B, Sham P, Li Q, et al. Gray matter in first-episode schizophrenia before and after antipsychotic drug treatment. Anatomical likelihood estimation meta-analyses with sample size weighting. Schizophr Bull 2011, 37: 199–211.

    Article  PubMed  Google Scholar 

  37. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I & Axis II Disorders (Version 2.0). New York: Biometrics Research, New York State Psychiatric Institute, 1995.

  38. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987, 13: 261–276.

    Article  CAS  PubMed  Google Scholar 

  39. Morosini PL, Magliano L, Brambilla L, Ugolini S, Pioli R. Development, reliability and acceptability of a new version of the DSM-IV Social and Occupational Functioning Assessment Scale (SOFAS) to assess routine social functioning. Acta Psychiatr Scand 2000, 101: 323–329.

    CAS  PubMed  Google Scholar 

  40. Annett M. A classification of hand preference by association analysis. Br J Psychol 1970, 61: 303–321.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Z, Zhang J, Zhang K, Zhang J, Li X, Cheng W, et al. Distinguishable brain networks relate disease susceptibility to symptom expression in schizophrenia. Hum Brain Mapp 2018. https://doi.org/10.1002/hbm.24190.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liang S, Li Y, Zhang Z, Kong X, Wang Q, Deng W, et al. Classification of first-episode schizophrenia using multimodal brain features: a combined structural and diffusion imaging study. Schizophr Bull 2018. https://doi.org/10.1093/schbul/sby091.

    Article  PubMed Central  Google Scholar 

  43. Wang Q, Zhang J, Liu Z, Crow TJ, Zhang K, Li M, et al. “Brain connectivity deviates by sex and hemisphere in the first episode of schizophrenia”-A route to the genetic basis of language and psychosis? Schizophr Bull 2018. https://doi.org/10.1093/schbul/sby061.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999, 9: 179–194.

    CAS  PubMed  Google Scholar 

  45. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 1999, 9: 195–207.

    Article  CAS  PubMed  Google Scholar 

  46. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 2000, 97: 11050–11055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bachmann S, Bottmer C, Pantel J, Schroder J, Amann M, Essig M, et al. MRI-morphometric changes in first-episode schizophrenic patients at 14 months follow-up. Schizophr Res 2004, 67: 301–303.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang W, Deng W, Yao L, Xiao Y, Li F, Liu J, et al. Brain structural abnormalities in a group of never-medicated patients with long-term schizophrenia. Am J Psychiatry 2015, 172: 995–1003.

    Article  PubMed  Google Scholar 

  49. Godwin D, Alpert KI, Wang L, Mamah D. Regional cortical thinning in young adults with schizophrenia but not psychotic or non-psychotic bipolar I disorder. Int J Bipolar Disord 2018, 6: 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kong L, Herold CJ, Zollner F, Salat DH, Lasser MM, Schmid LA, et al. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature. Psychiatry Res 2015, 231: 176–183.

    Article  PubMed  Google Scholar 

  51. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009, 62: 42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takahashi T, Wood SJ, Yung AR, Phillips LJ, Soulsby B, McGorry PD, et al. Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophr Res 2009, 111: 94–102.

    Article  PubMed  Google Scholar 

  53. Fornito A, Yung AR, Wood SJ, Phillips LJ, Nelson B, Cotton S, et al. Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biol Psychiatry 2008, 64: 758–765.

    Article  PubMed  Google Scholar 

  54. Van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS. Confounders of excessive brain volume loss in schizophrenia. Neurosci Biobehav Rev 2013, 37: 2418–2423.

    Article  PubMed  Google Scholar 

  55. Ebdrup BH, Norbak H, Borgwardt S, Glenthoj B. Volumetric changes in the basal ganglia after antipsychotic monotherapy: a systematic review. Curr Med Chem 2013, 20: 438–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hulshoff Pol HE, Schnack HG, Bertens MG, van Haren NE, van der Tweel I, Staal WG, et al. Volume changes in gray matter in patients with schizophrenia. Am J Psychiatry 2002, 159: 244–250.

    Article  PubMed  Google Scholar 

  57. van Haren NE, Hulshoff Pol HE, Schnack HG, Cahn W, Brans R, Carati I, et al. Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biol Psychiatry 2008, 63: 106–113.

    Article  PubMed  Google Scholar 

  58. Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull 2017, 33: 73–84.

    Article  CAS  PubMed  Google Scholar 

  59. Lieberman JA. Pathophysiologic mechanisms in the pathogenesis and clinical course of schizophrenia. J Clin Psychiatry 1999, 60: 9–12.

    Article  PubMed  Google Scholar 

  60. Lieberman JA, Sheitman BB, Kinon BJ. Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 1997, 17: 205–229.

    Article  CAS  PubMed  Google Scholar 

  61. Waddington JL, Scully PJ, Youssef HA. Developmental trajectory and disease progression in schizophrenia: the conundrum, and insights from a 12-year prospective study in the Monaghan 101. Schizophr Res 1997, 23: 107–118.

    Article  CAS  PubMed  Google Scholar 

  62. Woods BT. Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 1998, 155: 1661–1670.

    Article  CAS  PubMed  Google Scholar 

  63. Keshavan MS. Development, disease and degeneration in schizophrenia: a unitary pathophysiological model. J Psychiatr Res 1999, 33: 513–521.

    Article  CAS  PubMed  Google Scholar 

  64. Keshavan MS, Hogarty GE. Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol 1999, 11: 525–543.

    Article  CAS  PubMed  Google Scholar 

  65. Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, et al. Intellectual ability and cortical development in children and adolescents. Nature 2006, 440: 676–679.

    Article  CAS  PubMed  Google Scholar 

  66. Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 1999, 46: 616–626.

    Article  CAS  PubMed  Google Scholar 

  67. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000, 57: 65–73.

    Article  CAS  PubMed  Google Scholar 

  68. Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999, 45: 17–25.

    Article  CAS  PubMed  Google Scholar 

  69. Bubenikova-Valesova V, Horacek J, Vrajova M, Hoschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 2008, 32: 1014–1023.

    Article  CAS  PubMed  Google Scholar 

  70. Beninger RJ, Jhamandas A, Aujla H, Xue L, Dagnone RV, Boegman RJ, et al. Neonatal exposure to the glutamate receptor antagonist MK-801: effects on locomotor activity and pre-pulse inhibition before and after sexual maturity in rats. Neurotox Res 2002, 4: 477–488.

    Article  PubMed  Google Scholar 

  71. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, et al. Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 2008, 28: 3586–3594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of individual brain maturity using fMRI. Science 2010, 329: 1358–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002, 288: 1740–1748.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Development Program of China (2016YFC0904300), National Natural Science Foundation of China (81630030, 81130024 and 81528008), the National Natural Science Foundation of China/Research Grants Council of Hong Kong Joint Research Scheme (81461168029), and the “135” Project for Disciplines of Excellence, West China Hospital of Sichuan University, China (ZY2016103 and ZY2016203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nanyin Zhang or Tao Li.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Li, M., Zhou, Y. et al. Age-Related Reduction in Cortical Thickness in First-Episode Treatment-Naïve Patients with Schizophrenia. Neurosci. Bull. 35, 688–696 (2019). https://doi.org/10.1007/s12264-019-00348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-019-00348-x

Keywords

Navigation