Skip to main content
Log in

Regulation of autophagic flux by CHIP

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Autophagy is a major degradation system which processes substrates through the steps of autophagosome formation, autophagosome-lysosome fusion, and substrate degradation. Aberrant autophagic flux is present in many pathological conditions including neurodegeneration and tumors. CHIP/STUB1, an E3 ligase, plays an important role in neurodegeneration. In this study, we identified the regulation of autophagic flux by CHIP (carboxy-terminus of Hsc70-interacting protein). Knockdown of CHIP induced autophagosome formation through increasing the PTEN protein level and decreasing the AKT/mTOR activity as well as decreasing phosphorylation of ULK1 on Ser757. However, degradation of the autophagic substrate p62 was disturbed by knockdown of CHIP, suggesting an abnormality of autophagic flux. Furthermore, knockdown of CHIP increased the susceptibility of cells to autophagic cell death induced by bafilomycin A1. Thus, our data suggest that CHIP plays roles in the regulation of autophagic flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011, 147: 728–741.

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008, 451: 1069–1075.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013, 19: 983–997.

    Article  CAS  PubMed  Google Scholar 

  4. Vidal RL, Matus S, Bargsted L, Hetz C. Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 2014, 35: 583–591.

    Article  CAS  PubMed  Google Scholar 

  5. Liang JH, Jia JP. Dysfunctional autophagy in Alzheimer's disease: pathogenic roles and therapeutic implications. Neurosci Bull 2014, 30: 308–316.

    Article  CAS  PubMed  Google Scholar 

  6. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, et al. Macroautophagy—a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol 2005, 171: 87–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, et al. Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer's disease. Int J Biochem Cell Biol 2004, 36: 2531–2540.

    Article  CAS  PubMed  Google Scholar 

  8. Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 2010, 13: 805–811.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ. The role of autophagy in Parkinson's disease. Cold Spring Harb Perspect Med 2012, 2: a009357.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chen S, Zhang X, Song L, Le W. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol 2012, 22: 110–116.

    Article  CAS  PubMed  Google Scholar 

  11. Paul I, Ghosh MK. A CHIPotle in physiology and disease. Int J Biochem Cell Biol 2015, 58: 37–52.

    Article  CAS  PubMed  Google Scholar 

  12. Paul I, Ghosh MK. The E3 ligase CHIP: insights into its structure and regulation. Biomed Res Int 2014, 2014: 918183.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ardley HC, Robinson PA. The role of ubiquitin-protein ligases in neurodegenerative disease. Neurodegener Dis 2004, 1: 71–87.

    Article  CAS  PubMed  Google Scholar 

  14. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ. The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 2005, 280: 23727–23734.

    Article  CAS  PubMed  Google Scholar 

  15. Tetzlaff JE, Putcha P, Outeiro TF, Ivanov A, Berezovska O, Hyman BT, et al. CHIP targets toxic alpha-Synuclein oligomers for degradation. J Biol Chem 2008, 283: 17962–17968.

    Article  Google Scholar 

  16. Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI, et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 2002, 10: 55–67.

    Article  CAS  PubMed  Google Scholar 

  17. Shimura H, Schwartz D, Gygi SP, Kosik KS. CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 2004, 279: 4869–4876.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar P, Ambasta RK, Veereshwarayya V, Rosen KM, Kosik KS, Band H, et al. CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism. Hum Mol Genet 2007, 16: 848–864.

    Article  CAS  PubMed  Google Scholar 

  19. Ding X, Goldberg MS. Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP. PLoS One 2009, 4: e5949.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ko HS, Bailey R, Smith WW, Liu Z, Shin JH, Lee YI, et al. CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc Natl Acad Sci U S A 2009, 106: 2897–2902.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, et al. Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 2005, 280: 11635–11640.

    Article  CAS  PubMed  Google Scholar 

  22. Miller VM, Nelson RF, Gouvion CM, Williams A, Rodriguez-Lebron E, Harper SQ, et al. CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 2005, 25: 9152–9161.

    Article  CAS  PubMed  Google Scholar 

  23. Urushitani M, Kurisu J, Tateno M, Hatakeyama S, Nakayama K, Kato S, et al. CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/ Hsc70. J Neurochem 2004, 90: 231–244.

    Article  CAS  PubMed  Google Scholar 

  24. Shi Y, Wang J, Li JD, Ren H, Guan W, He M, et al. Identification of CHIP as a novel causative gene for autosomal recessive cerebellar ataxia. PLoS One 2013, 8: e81884.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cordoba M, Rodriguez-Quiroga S, Gatto EM, Alurralde A, Kauffman MA. Ataxia plus myoclonus in a 23-year-old patient due to STUB1 mutations. Neurology 2014, 83: 287–288.

    Article  PubMed  Google Scholar 

  26. Depondt C, Donatello S, Simonis N, Rai M, van Heurck R, Abramowicz M, et al. Autosomal recessive cerebellar ataxia of adult onset due to STUB1 mutations. Neurology 2014, 82: 1749–1750.

    Article  PubMed  Google Scholar 

  27. Shi CH, Schisler JC, Rubel CE, Tan S, Song B, McDonough H, et al. Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP. Hum Mol Genet 2014, 23: 1013–1024.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Synofzik M, Schule R, Schulze M, Gburek-Augustat J, Schweizer R, Schirmacher A, et al. Phenotype and frequency of STUB1 mutations: next-generation screenings in Caucasian ataxia and spastic paraplegia cohorts. Orphanet J Rare Dis 2014, 9: 57.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000, 19: 5720–5728.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhou L, Wang HF, Ren HG, Chen D, Gao F, Hu QS, et al. Bcl-2-dependent upregulation of autophagy by sequestosome 1/p62 in vitro. Acta Pharmacol Sin 2013, 34: 651–656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. N'Diaye EN, Kajihara KK, Hsieh I, Morisaki H, Debnath J, Brown EJ. PLIC proteins or ubiquilins regulate autophagydependent cell survival during nutrient starvation. EMBO Rep 2009, 10: 173–179.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004, 117: 2805–2812.

    Article  CAS  PubMed  Google Scholar 

  33. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo- Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8: 445–544.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005, 171: 603–614.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lippai M, Low P. The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed Res Int 2014, 2014: 832704.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007, 282: 24131–24145.

    Article  CAS  PubMed  Google Scholar 

  37. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012, 149: 274–293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Heras-Sandoval D, Perez-Rojas JM, Hernandez-Damian J, Pedraza- Chaverri J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 2014, 26: 2694–2701.

    Article  CAS  PubMed  Google Scholar 

  39. Ahmed SF, Deb S, Paul I, Chatterjee A, Mandal T, Chatterjee U, et al. The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J Biol Chem 2012, 287: 15996–16006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lv Y, Song S, Zhang K, Gao H, Ma R. CHIP regulates AKT/ FoxO/Bim signaling in MCF7 and MCF10A cells. PLoS One 2013, 8: e83312.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011, 13: 132–141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A 2011, 108: 4788–4793.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3: 452–460.

    Article  CAS  PubMed  Google Scholar 

  44. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 2010, 140: 313–326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005, 25: 1025–1040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Shacka JJ, Klocke BJ, Shibata M, Uchiyama Y, Datta G, Schmidt RE, et al. Bafilomycin A1 inhibits chloroquineinduced death of cerebellar granule neurons. Mol Pharmacol 2006, 69: 1125–1136.

    Article  CAS  PubMed  Google Scholar 

  47. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, et al. Identification of CHIP, a novel tetratricopeptide repeatcontaining protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 1999, 19: 4535–4545.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J, et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 2001, 3: 93–96.

    Article  CAS  PubMed  Google Scholar 

  49. Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, et al. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 2003, 22: 5446–5458.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 2006, 440: 551–555.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. McDonough H, Charles PC, Hilliard EG, Qian SB, Min JN, Portbury A, et al. Stress-dependent Daxx-CHIP interaction suppresses the p53 apoptotic program. J Biol Chem 2009, 284: 20649–20659.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ronnebaum SM, Wu Y, McDonough H, Patterson C. The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination. Mol Cell Biol 2013, 33: 4461–4472.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 2007, 120: 4081–4091.

    Article  CAS  PubMed  Google Scholar 

  54. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc Natl Acad Sci U S A 2010, 107: 14164–14169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Li L, Zhang X, Le W. Autophagy dysfunction in Alzheimer's disease. Neurodegener Dis 2010, 7: 265–271.

    PubMed  Google Scholar 

  56. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat Neurosci 2010, 13: 567–576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Morimoto N, Nagai M, Ohta Y, Miyazaki K, Kurata T, Morimoto M, et al. Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res 2007, 1167: 112–117.

    Article  CAS  PubMed  Google Scholar 

  58. Li L, Zhang X, Le W. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 2008, 4: 290–293.

    Article  CAS  PubMed  Google Scholar 

  59. Sasaki S. Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2011, 70: 349–359.

    Article  PubMed  Google Scholar 

  60. Kuang E, Qi J, Ronai Z. Emerging roles of E3 ubiquitin ligases in autophagy. Trends Biochem Sci 2013, 38: 453–460.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Chen D, Gao F, Li B, Wang H, Xu Y, Zhu C, et al. Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J Biol Chem 2010, 285: 38214–38223.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zhao Y, Xiong X, Sun Y. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 2011, 44: 304–316.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Tomar D, Singh R, Singh AK, Pandya CD. TRIM13 regulates ER stress induced autophagy and clonogenic ability of the cells. Biochim Biophys Acta 2012, 1823: 316–326.

    Article  CAS  PubMed  Google Scholar 

  64. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett 2010, 584: 1287–1295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Ganley IG, Lamdu H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009, 284: 12297–12305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009, 20: 1981–1991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009, 20: 1992–2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Alers S, Loffler AS, Wesselborg S, Stork B. Role of AMPKmTOR- Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 2012, 32: 2–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995, 270: 2320–2326.

    Article  CAS  PubMed  Google Scholar 

  70. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004, 18: 1926–1945.

    Article  CAS  PubMed  Google Scholar 

  71. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012, 13: 283–296.

    CAS  PubMed  Google Scholar 

  72. Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, et al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J Neurochem 2005, 93: 105–117.

    Article  CAS  PubMed  Google Scholar 

  73. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 2010, 285: 13107–13120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol 1997, 12: 25–31.

    CAS  PubMed  Google Scholar 

  75. Malagelada C, Jin ZH, Greene LA. RTP801 is induced in Parkinson's disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci 2008, 28: 14363–14371.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Murata S, Minami Y, Minami M, Chiba T, Tanaka K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2001, 2: 1133–1138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Cabral Miranda F, Adao-Novaes J, Hauswirth WW, Linden R, Petrs- Silva H, Chiarini LB. CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system. Front Cell Neurosci 2014, 8: 438.

    Google Scholar 

  78. Verfaillie T, Salazar M, Velasco G, Agostinis P. Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy. Int J Cell Biol 2010, 2010: 930509.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haigang Ren or Guanghui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Ying, Z., Wang, H. et al. Regulation of autophagic flux by CHIP. Neurosci. Bull. 31, 469–479 (2015). https://doi.org/10.1007/s12264-015-1543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1543-7

Keywords

Navigation