Skip to main content

Advertisement

Log in

Development of 18F-labeled radiotracers for neuroreceptor imaging with positron emission tomography

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) is an in vivo molecular imaging tool which is widely used in nuclear medicine for early diagnosis and treatment follow-up of many brain diseases. PET uses biomolecules as probes which are labeled with radionuclides of short half-lives, synthesized prior to the imaging studies. These probes are called radiotracers. Fluorine-18 is a radionuclide routinely used in the radiolabeling of neuroreceptor ligands for PET because of its favorable half-life of 109.8 min. The delivery of such radiotracers into the brain provides images of transport, metabolic, and neurotransmission processes on the molecular level. After a short introduction into the principles of PET, this review mainly focuses on the strategy of radiotracer development bridging from basic science to biomedical application. Successful radiotracer design as described here provides molecular probes which not only are useful for imaging of human brain diseases, but also allow molecular neuroreceptor imaging studies in various small-animal models of disease, including genetically-engineered animals. Furthermore, they provide a powerful tool for in vivo pharmacology during the process of pre-clinical drug development to identify new drug targets, to investigate pathophysiology, to discover potential drug candidates, and to evaluate the pharmacokinetics and pharmacodynamics of drugs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mankoff DA. A definition of molecular imaging. J Nucl Med 2007, 48: 18N, 21N.

    PubMed  Google Scholar 

  2. Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Pharmacol 2008: 109–132.

    Google Scholar 

  3. Drzezga A, Barthel H, Minoshima S, Sabri O. Potential clinical applications of PET/MR imaging in neurodegenerative diseases. J Nucl Med 2014, 55: 1–9.

    Google Scholar 

  4. Levi H. George von Hevesy memorial lecture. George Hevesy and his concept of radioactive indicators—in retrospect. Eur J Nucl Med 1976, 1: 3–10.

    PubMed  CAS  Google Scholar 

  5. Sampson CD (Ed.). Textbook of Radiopharmacy: Theory and Practice. 3rd. ed. Amsterdam: Gordan and Breach Science Publishers, 1999.

    Google Scholar 

  6. Brust P, Deuther-Conrad W, Donat CK, Barthel H, Riss P, Paterson L, et al. Preclinical aspects of nicotinic acetylcholine receptor imaging. In: Dierckx RAJ, Otte A, de Vries EFJ, et al. (Eds.). PET and SPECT of Neurobiological Systems. Springer, 2014: 465–512.

    Google Scholar 

  7. Virdee K, Cumming P, Caprioli D, Jupp B, Rominger A, Aigbirhio FI, et al. Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev 2012, 36: 1188–1216.

    PubMed  Google Scholar 

  8. Melhem M. Translation of central nervous system occupancy from animal models: application of pharmacokinetic/pharmacodynamic modeling. J Pharmacol Exp Ther 2013, 347: 2–6.

    PubMed  CAS  Google Scholar 

  9. Frey KA, Koeppe RA, Mulholland GK, Jewett D, Hichwa R, Ehrenkaufer RL, et al. In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography. J Cereb Blood Flow Metab 1992, 12: 147–154.

    PubMed  CAS  Google Scholar 

  10. Xie G, Gunn RN, Dagher A, Daloze T, Plourde G, Backman SB, et al. PET quantification of muscarinic cholinergic receptors with [N-11C-methyl]-benztropine and application to studies of propofol-induced unconsciousness in healthy human volunteers. Synapse 2004, 51: 91–101.

    PubMed  CAS  Google Scholar 

  11. Yamamoto S, Ouchi Y, Nakatsuka D, Tahara T, Mizuno K, Tajima S, et al. Reduction of [11C](+)3-MPB binding in brain of chronic fatigue syndrome with serum autoantibody against muscarinic cholinergic receptor. PLoS One 2012, 7: e51515.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Ichise M, Cohen RM, Carson RE. Noninvasive estimation of normalized distribution volume: application to the muscarinic-2 ligand [18F]FP-TZTP. J Cereb Blood Flow Metab 2008, 28: 420–430.

    PubMed  CAS  Google Scholar 

  13. Sabri O, Kendziorra K, Wolf H, Gertz HJ, Brust P. Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 2008, 35Suppl 1: S30–45.

    PubMed  CAS  Google Scholar 

  14. Ding YS, Fowler JS, Logan J, Wang GJ, Telang F, Garza V, et al. 6-[18F]Fluoro-A-85380, a new PET tracer for the nicotinic acetylcholine receptor: studies in the human brain and in vivo demonstration of specific binding in white matter. Synapse 2004, 53: 184–189.

    PubMed  CAS  Google Scholar 

  15. Wong DF, Kuwabara H, Kim J, Brasic JR, Chamroonrat W, Gao Y, et al. PET imaging of high-affinity α4β2 nicotinic acetylcholine receptors in humans with 18F-AZAN, a radioligand with optimal brain kinetics. J Nucl Med 2013, 54: 1308–1314.

    PubMed  CAS  Google Scholar 

  16. Sabri O, Wilke S, Gräf S, Schönknecht P, Becker G, Patt M, et al. Cerebral α4β2 nicotinic acetylcholine receptors (nAChRs) in early Alzheimer disease (AD) assessed with the new PET tracer (-)-[18F]-norchloro-fluoro-homoepibatidine (NCFHEB). J Nucl Med 2011, 52(Suppl. 1): 1267.

    Google Scholar 

  17. Toyohara J, Sakata M, Wu J, Ishikawa M, Oda K, Ishii K, et al. Preclinical and the first clinical studies on [11C] CHIBA-1001 for mapping α7 nicotinic receptors by positron emission tomography. Ann Nucl Med 2009, 23: 301–309.

    PubMed  CAS  Google Scholar 

  18. Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage 2003, 19: 1760–1769.

    PubMed  Google Scholar 

  19. Fukumitsu N, Ishii K, Kimura Y, Oda K, Hashimoto M, Suzuki M, et al. Adenosine A1 receptors using 8-dicyclopropylmethyl-1-[11C]methyl-3-propylxanthine PET in Alzheimer’s disease. Ann Nucl Med 2008, 22: 841–847.

    PubMed  Google Scholar 

  20. Mishina M, Ishiwata K, Naganawa M, Kimura Y, Kitamura S, Suzuki M, et al. Adenosine A2A receptors measured with [11C] TMSX PET in the striata of Parkinson’s disease patients. PLoS One 2011, 6: e17338.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Ramlackhansingh AF, Bose SK, Ahmed I, Turkheimer FE, Pavese N, Brooks DJ. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology 2011, 76: 1811–1816.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Burns HD, Van Laere K, Sanabria-Bohorquez S, Hamill TG, Bormans G, Eng WS, et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci U S A 2007, 104: 9800–9805.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Terry GE, Hirvonen J, Liow JS, Seneca N, Tauscher JT, Schaus JM, et al. Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB1 receptors using positron emission tomography. Eur J Nucl Med Mol Imaging 2010, 37: 1499–1506.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Wong DF, Kuwabara H, Horti AG, Raymont V, Brasic J, Guevara M, et al. Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. Neuroimage 2010, 52: 1505–1513.

    PubMed  CAS  Google Scholar 

  25. Ahmad R, Koole M, Evens N, Serdons K, Verbruggen A, Bormans G, et al. Whole-body biodistribution and radiation dosimetry of the cannabinoid type 2 receptor ligand [11C]-NE40 in healthy subjects. Mol Imaging Biol 2013.

    Google Scholar 

  26. Farde L, Halldin C, Stone-Elander S, Sedvall G. PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology 1987, 92: 278–284.

    PubMed  CAS  Google Scholar 

  27. Karlsson P, Farde L, Halldin C, Swahn CG, Sedvall G, Foged C, et al. PET examination of [11C]NNC 687 and [11C] NNC 756 as new radioligands for the D1-dopamine receptor. Psychopharmacology 1993, 113: 149–156.

    PubMed  CAS  Google Scholar 

  28. Slifstein M, Kolachana B, Simpson EH, Tabares P, Cheng B, Duvall M, et al. COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PET. Mol Psychiatry 2008, 13: 821–827.

    PubMed  CAS  Google Scholar 

  29. Farde L, Hall H, Ehrin E, Sedvall G. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 1986, 231: 258–261.

    PubMed  CAS  Google Scholar 

  30. Wong DF, Wagner HN, Jr., Tune LE, Dannals RF, Pearlson GD, Links JM, et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 1986, 234: 1558–1563.

    PubMed  CAS  Google Scholar 

  31. Narendran R, Frankle WG, Mason NS, Laymon CM, Lopresti BJ, Price JC, et al. Positron emission tomography imaging of D2/3 agonist binding in healthy human subjects with the radiotracer [11C]-N-propyl-norapomorphine: preliminary evaluation and reproducibility studies. Synapse 2009, 63: 574–584.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Otsuka T, Ito H, Halldin C, Takahashi H, Takano H, Arakawa R, et al. Quantitative PET analysis of the dopamine D2 receptor agonist radioligand 11C-(R)-2-CH3O-N-npropylnorapomorphine in the human brain. J Nucl Med 2009, 50: 703–710.

    PubMed  CAS  Google Scholar 

  33. Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J, et al. A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology 1997, 133: 396–404.

    PubMed  CAS  Google Scholar 

  34. Mukherjee J, Christian BT, Dunigan KA, Shi B, Narayanan TK, Satter M, et al. Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 2002, 46: 170–188.

    PubMed  CAS  Google Scholar 

  35. Ginovart N, Willeit M, Rusjan P, Graff A, Bloomfield PM, Houle S, et al. Positron emission tomography quantification of [11C]-(+)-PHNO binding in the human brain. J Cereb Blood Flow Metab 2007, 27: 857–871.

    PubMed  CAS  Google Scholar 

  36. Moresco RM, Scheithauer BW, Lucignani G, Lombardi D, Rocca A, Losa M, et al. Oestrogen receptors in meningiomas: a correlative PET and immunohistochemical study. Nucl Med Comm 1997, 18: 606–615.

    CAS  Google Scholar 

  37. Toyohara J, Sakata M, Fujinaga M, Yamasaki T, Oda K, Ishii K, et al. Preclinical and the first clinical studies on [11C] ITMM for mapping metabotropic glutamate receptor subtype 1 by positron emission tomography. Nucl Med Biol 2013, 40: 214–220.

    PubMed  CAS  Google Scholar 

  38. Ametamey SM, Treyer V, Streffer J, Wyss MT, Schmidt M, Blagoev M, et al. Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688. J Nucl Med 2007, 48: 247–252.

    PubMed  CAS  Google Scholar 

  39. Brown AK, Kimura Y, Zoghbi SS, Simeon FG, Liow JS, Kreisl WC, et al. Metabotropic glutamate subtype 5 receptors are quantified in the human brain with a novel radioligand for PET. J Nucl Med 2008, 49: 2042–2048.

    PubMed  PubMed Central  Google Scholar 

  40. Kagedal M, Cselenyi Z, Nyberg S, Jonsson S, Raboisson P, Stenkrona P, et al. Non-linear mixed effects modelling of positron emission tomography data for simultaneous estimation of radioligand kinetics and occupancy in healthy volunteers. Neuroimage 2012, 61: 849–856.

    PubMed  Google Scholar 

  41. Wong DF, Waterhouse R, Kuwabara H, Kim J, Brasic JR, Chamroonrat W, et al. 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, biokinetics, and radiation dosimetry. J Nucl Med 2013, 54: 388–396.

    PubMed  CAS  Google Scholar 

  42. Kumlien E, Hartvig P, Valind S, Oye I, Tedroff J, Langström B. NMDA-receptor activity visualized with (S)-[N-methyl-11C] ketamine and positron emission tomography in patients with medial temporal lobe epilepsy. Epilepsia 1999, 40: 30–37.

    PubMed  CAS  Google Scholar 

  43. Hammers A, Asselin M, Brooks DJ, Luthra SK, Hume SP, Thompson PJ, et al. Correlation of memory function with binding of [C-11]CNS 5161, a novel putative NMDA ion channel PET ligand. Neuroimage 2004, 22(Suppl 2): T54–55.

    Google Scholar 

  44. Ametamey SM, Bruehlmeier M, Kneifel S, Kokic M, Honer M, Arigoni M, et al. PET studies of 18F-memantine in healthy volunteers. Nucl Med Biol 2002, 29: 227–231.

    PubMed  CAS  Google Scholar 

  45. McGinnity CJ, Hammers A, Riano Barros DA, Luthra SK, Jones PA, Trigg W, et al. Initial evaluation of 18F-GE-179, a putative PET Tracer for activated N-methyl D-aspartate receptors. J Nucl Med 2014, 55: 423–430.

    PubMed  CAS  Google Scholar 

  46. Matsumoto R, Haradahira T, Ito H, Fujimura Y, Seki C, Ikoma Y, et al. Measurement of glycine binding site of N-methyl-D-asparate receptors in living human brain using 4-acetoxy derivative of L-703,717, 4-acetoxy-7-chloro-3-[3-(4-[11C] methoxybenzyl) phenyl]-2(1H)-quinolone (AcL703) with positron emission tomography. Synapse 2007, 61: 795–800.

    PubMed  CAS  Google Scholar 

  47. Yanai K, Watanabe T, Itoh M, Hatazawa J, Iwata R, Ido T. Labeling of histamine H1-receptors in vivo: a compartment model analysis and positron emission tomographic imaging. Agents Actions Suppl 1991, 33: 381–386.

    PubMed  CAS  Google Scholar 

  48. Ashworth S, Rabiner EA, Gunn RN, Plisson C, Wilson AA, Comley RA, et al. Evaluation of 11C-GSK189254 as a novel radioligand for the H3 receptor in humans using PET. J Nucl Med 2010, 51: 1021–1029.

    PubMed  CAS  Google Scholar 

  49. Persson A, Ehrin E, Eriksson L, Farde L, Hedström CG, Litton JE, et al. Imaging of [11C]-labelled Ro 15-1788 binding to benzodiazepine receptors in the human brain by positron emission tomography. J Psychiatric Res 1985, 19: 609–622.

    CAS  Google Scholar 

  50. Leveque P, Sanabria-Bohorquez S, Bol A, De Volder A, Labar D, Van Rijckevorsel K, et al. Quantification of human brain benzodiazepine receptors using [18F]fluoroethylflumazenil: a first report in volunteers and epileptic patients. Eur J Nucl Med Mol Imaging 2003, 30: 1630–1636.

    PubMed  CAS  Google Scholar 

  51. Lee JD, Park HJ, Park ES, Kim DG, Rha DW, Kim EY, et al. Assessment of regional GABAA receptor binding using 18F-fluoroflumazenil positron emission tomography in spastic type cerebral palsy. Neuroimage 2007, 34: 19–25.

    PubMed  Google Scholar 

  52. Massaweh G, Schirrmacher E, la Fougere C, Kovacevic M, Wängler C, Jolly D, et al. Improved work-up procedure for the production of [18F]flumazenil and first results of its use with a high-resolution research tomograph in human stroke. Nucl Med Biol 2009, 36: 721–727.

    PubMed  CAS  Google Scholar 

  53. Lingford-Hughes A, Hume SP, Feeney A, Hirani E, Osman S, Cunningham VJ, et al. Imaging the GABA-benzodiazepine receptor subtype containing the alpha5-subunit in vivo with [11C]Ro15 4513 positron emission tomography. J Cereb Blood Flow Metab 2002, 22: 878–889.

    PubMed  CAS  Google Scholar 

  54. Frost JJ, Mayberg HS, Sadzot B, Dannals RF, Lever JR, Ravert HT, et al. Comparison of [11C]diprenorphine and [11C] carfentanil binding to opiate receptors in humans by positron emission tomography. J Cereb Blood Flow Metab 1990, 10: 484–492.

    PubMed  CAS  Google Scholar 

  55. Madar I, Lesser RP, Krauss G, Zubieta JK, Lever JR, Kinter CM, et al. Imaging of σ- and μ-opioid receptors in temporal lobe epilepsy by positron emission tomography. Ann Neurol 1997, 41: 358–367.

    PubMed  CAS  Google Scholar 

  56. Tomasi G, Zheng M-Q, Weinzimmer D, Lin S-F, Nabulsi N, Williams W, et al. Kinetic modeling of the kappa agonist tracer [11C]GR103545 in humans. J Nucl Med 2010, 51(Supplement 2): 1293.

    Google Scholar 

  57. Cohen RM, Carson RE, Sunderland T. Opiate receptor avidity in the thalamus is sexually dimorphic in the elderly. Synapse 2000, 38: 226–229.

    PubMed  CAS  Google Scholar 

  58. Baumgärtner U, Buchholz HG, Bellosevich A, Magerl W, Siessmeier T, Rolke R, et al. High opiate receptor binding potential in the human lateral pain system. Neuroimage 2006, 30: 692–699.

    PubMed  Google Scholar 

  59. Hostetler ED, Sanabria-Bohorquez S, Fan H, Zeng Z, Gantert L, Williams M, et al. Synthesis, characterization, and monkey positron emission tomography (PET) studies of [18F]Y1-973, a PET tracer for the neuropeptide Y Y1 receptor. Neuroimage 2011, 54: 2635–2642.

    PubMed  CAS  Google Scholar 

  60. Pike VW, McCarron JA, Lammerstma AA, Hume SP, Poole K, Grasby PM, et al. First delineation of 5-HT1A receptors in human brain with PET and 11C WAY-100635. Eur J Pharmacol 1995, 283: R1–3.

    PubMed  CAS  Google Scholar 

  61. Parsey RV, Slifstein M, Hwang DR, Abi-Dargham A, Simpson N, Mawlawi O, et al. Validation and reproducibility of measurement of 5-HT1A receptor parameters with [carbonyl-11C]WAY-100635 in humans: comparison of arterial and reference tisssue input functions. J Cereb Blood Flow Metab 2000, 20: 1111–1133.

    PubMed  CAS  Google Scholar 

  62. Andree B, Halldin C, Pike VW, Gunn RN, Olsson H, Farde L. The PET radioligand [carbonyl-11C]desmethyl-WAY-100635 binds to 5-HT1A receptors and provides a higher radioactive signal than [carbonyl-11C]WAY-100635 in the human brain. J Nucl Med 2002, 43: 292–303.

    PubMed  CAS  Google Scholar 

  63. Houle S, Wilson AA, Inaba T, Fisher N, DaSilva JN. Imaging 5-HT1A receptors with positron emission tomography: initial human studies with [11C]CPC-222. Nucl Med Comm 1997, 18: 1130–1134.

    CAS  Google Scholar 

  64. Milak MS, DeLorenzo C, Zanderigo F, Prabhakaran J, Kumar JS, Majo VJ, et al. In vivo quantification of human serotonin 1A receptor using 11C-CUMI-101, an agonist PET radiotracer. J Nucl Med 2010, 51: 1892–1900.

    PubMed  Google Scholar 

  65. Costes N, Merlet I, Zimmer L, Lavenne F, Cinotti L, Delforge J, et al. Modeling [18F]MPPF positron emission tomography kinetics for the determination of 5-hydroxytryptamine1A receptor concentration with multiinjection. J Cereb Blood Flow Metab 2002, 22: 753–765.

    PubMed  CAS  Google Scholar 

  66. Theodore WH, Giovacchini G, Bonwetsch R, Bagic A, Reeves-Tyer P, Herscovitch P, et al. The effect of antiepileptic drugs on 5-HT-receptor binding measured by positron emission tomography. Epilepsia 2006, 47: 499–503.

    PubMed  CAS  Google Scholar 

  67. Gallezot JD, Nabulsi N, Neumeister A, Planeta-Wilson B, Williams WA, Singhal T, et al. Kinetic modeling of the serotonin 5-HT1B receptor radioligand [11C]P943 in humans. J Cereb Blood Flow Metab 2010, 30: 196–210.

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Varnäs K, Nyberg S, Halldin C, Varrone A, Takano A, Karlsson P, et al. Quantitative analysis of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. J Cereb Blood Flow Metab 2011, 31: 113–123.

    PubMed  PubMed Central  Google Scholar 

  69. Murrough JW, Henry S, Hu J, Gallezot JD, Planeta-Wilson B, Neumaier JF, et al. Reduced ventral striatal/ventral pallidal serotonin1B receptor binding potential in major depressive disorder. Psychopharmacology 2011, 213: 547–553.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Hinz R, Bhagwagar Z, Cowen PJ, Cunningham VJ, Grasby PM. Validation of a tracer kinetic model for the quantification of 5-HT2A receptors in human brain with [11C]MDL 100,907. J Cereb Blood Flow Metab 2007, 27: 161–172.

    PubMed  CAS  Google Scholar 

  71. Rosier A, Dupont P, Peuskens J, Bormans G, Vandenberghe R, Maes M, et al. Visualisation of loss of 5-HT2A receptors with age in healthy volunteers using [18F]altanserin and positron emission tomographic imaging. Psychiatry Res 1996, 68: 11–22.

    PubMed  CAS  Google Scholar 

  72. van Dyck CH, Soares JC, Tan PZ, Staley JK, Baldwin RM, Amici LA, et al. Equilibrium modeling of 5-HT2A receptors with [18F]deuteroaltanserin and PET: feasibility of a constant infusion paradigm. Nucl Med Biol 2000, 27: 715–722.

    PubMed  Google Scholar 

  73. Trichard C, Paillere-Martinot ML, Attar-Levy D, Recassens C, Monnet F, Martinot JL. Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients. Am J Psychiatry 1998, 155: 505–508.

    PubMed  CAS  Google Scholar 

  74. Ettrup A, da Cunha-Bang S, McMahon B, Lehel S, Dyssegaard A, Skibsted AW, et al. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J Cereb Blood Flow Metab 2014.

    Google Scholar 

  75. Marner L, Gillings N, Comley RA, Baare WF, Rabiner EA, Wilson AA, et al. Kinetic modeling of 11C-SB207145 binding to 5-HT4 receptors in the human brain in vivo. J Nucl Med 2009, 50: 900–908.

    PubMed  CAS  Google Scholar 

  76. Parker CA, Gunn RN, Rabiner EA, Slifstein M, Comley R, Salinas C, et al. Radiosynthesis and characterization of 11C-GSK215083 as a PET radioligand for the 5-HT6 receptor. J Nucl Med 2012, 53: 295–303.

    PubMed  CAS  Google Scholar 

  77. Mishina M, Ishiwata K, Ishii K, Kitamura S, Kimura Y, Kawamura K, et al. Function of sigma1 receptors in Parkinson’s disease. Acta Neurol Scand 2005 112: 103–107.

    PubMed  CAS  Google Scholar 

  78. Waterhouse RN, Nobler MS, Zhou Y, Chang RC, Morales O, Kuwabara H, et al. First evaluation of the sigma1 receptor radioligand [18F]1-3-fluoropropyl-4-((4-cyanophenoxy)-methyl) piperidine ([18F]FPS) in healthy humans. Neuroimage 2004, 22: T29.

    Google Scholar 

  79. Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol 1989, 26: 752–758.

    PubMed  CAS  Google Scholar 

  80. Banati RB, Goerres GW, Myers R, Gunn RN, Turkheimer FE, Kreutzberg GW, et al. [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology 1999, 53: 2199–2203.

    PubMed  CAS  Google Scholar 

  81. Brown AK, Fujita M, Fujimura Y, Liow JS, Stabin M, Ryu YH, et al. Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. J Nucl Med 2007, 48: 2072–2079.

    PubMed  CAS  Google Scholar 

  82. Endres CJ, Pomper MG, James M, Uzuner O, Hammoud DA, Watkins CC, et al. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. J Nucl Med 2009, 50: 1276–1282.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Yasuno F, Kosaka J, Ota M, Higuchi M, Ito H, Fujimura Y, et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106. Psychiatry Res 2012, 203: 67–74.

    PubMed  CAS  Google Scholar 

  84. Gulyas B, Toth M, Schain M, Airaksinen A, Vas A, Kostulas K, et al. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [11C]vinpocetine. J Neurol Sci 2012, 320: 110–117.

    PubMed  CAS  Google Scholar 

  85. Fujimura Y, Zoghbi SS, Simeon FG, Taku A, Pike VW, Innis RB, et al. Quantification of translocator protein (18 kDa) in the human brain with PET and a novel radioligand, F-18-PBR06. J Nucl Med 2009, 50: 1047–1053.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Arlicot N, Vercouillie J, Ribeiro MJ, Tauber C, Venel Y, Baulieu JL, et al. Initial evaluation in healthy humans of [18F] DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol 2012, 39: 570–578.

    PubMed  CAS  Google Scholar 

  87. Mizrahi R, Rusjan PM, Kennedy J, Pollock B, Mulsant B, Suridjan I, et al. Translocator protein (18 kDa) polymorphism (rs6971) explains in-vivo brain binding affinity of the PET radioligand [18F]FEPPA. J Cereb Blood Flow Metab 2012, 32: 968–972.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Guo Q, Colasanti A, Owen DR, Onega M, Kamalakaran A, Bennacef I, et al. Quantification of the specific translocator protein signal of 18F-PBR111 in healthy humans: a genetic polymorphism effect on in vivo binding. J Nucl Med 2013, 54: 1915–1923.

    PubMed  CAS  Google Scholar 

  89. Brust P, Deuther-Conrad W, Lehmkuhl K, Jia H, Wünsch B. Molecular imaging of σ1 receptors in vivo: current status and perspectives. Curr Med Chem 2014, 21: 35–69.

    PubMed  CAS  Google Scholar 

  90. Jansen KL, Faull RL, Storey P, Leslie RA. Loss of sigma binding sites in the CA1 area of the anterior hippocampus in Alzheimer’s disease correlates with CA1 pyramidal cell loss. Brain Res 1993, 623: 299–302.

    PubMed  CAS  Google Scholar 

  91. Weissman AD, Casanova MF, Kleinman JE, London ED, De Souza EB. Selective loss of cerebral cortical sigma, but not PCP binding sites in schizophrenia. Biol Psychiatry 1991, 29: 41–54.

    PubMed  CAS  Google Scholar 

  92. van Waarde A, Rybczynska AA, Ramakrishnan N, Ishiwata K, Elsinga PH, Dierckx RA. Sigma receptors in oncology: therapeutic and diagnostic applications of sigma ligands. Curr Pharm Des 2010, 16: 3519–3537.

    PubMed  Google Scholar 

  93. Banister SD, Kassiou M. The therapeutic potential of sigma (σ) receptors for the treatment of central nervous system diseases: evaluation of the evidence. Curr Pharm Des 2012, 18: 884–901.

    PubMed  CAS  Google Scholar 

  94. Megalizzi V, Le Mercier M, Decaestecker C. Sigma receptors and their ligands in cancer biology: overview and new perspectives for cancer therapy. Med Res Rev 2012, 32: 410–427.

    PubMed  CAS  Google Scholar 

  95. Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res 2011, 221: 555–563.

    PubMed  CAS  Google Scholar 

  96. Brust P, Deuther-Conrad W. Molecular imaging of α7 nicotinic acetylcholine receptors in vivo: current status and perspectives. In: Bright P (Ed). Neuroimaging — Clinical Applications. InTech, 2012: 533–558.

    Google Scholar 

  97. Brust P, Peters D, Deuther-Conrad W. Development of radioligands for the imaging of α7 nicotinic acetylcholine receptors with positron emission tomography. Curr Drug Targets 2012, 13: 594–601.

    PubMed  CAS  Google Scholar 

  98. Kadir A, Almkvist O, Wall A, Langström B, Nordberg A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology 2006, 188: 509–520.

    PubMed  CAS  Google Scholar 

  99. Papke RL. Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem Pharmacol 2014. doi: 10.1016/j.bcp.2014.1001.1029.

    Google Scholar 

  100. Moerlein SM. Molecular imaging and the development of new radiopharmaceuticals. In: Kowalsky RJ, Falen SW (Eds.). Radiopharmaceuticals in Nuclear Pharmacy and Nuclear Medicine. American Pharmacists Association (APhA), 2011:741.

    Google Scholar 

  101. Davenport AP, Russel FD. Radioligand Binding Assays: Theory and Practice. In: Mather SJ (Ed.). Current Directions in Radiopharmaceutical Research and Development. Kluwer Academic Publisher, 1996: 169–179.

    Google Scholar 

  102. Koeppe RA. A panel discussion on the future of pharmacology and experimental tomography. In: Gjedde A, Hansen SB, Knudsen GM, Paulson OB (Eds.). Physiological Imaging of the Brain with PET. Academic Press, 2001: 402.

    Google Scholar 

  103. Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther 2013, 137: 22–54.

    PubMed  CAS  Google Scholar 

  104. Lendvai B, Kassai F, Szajli A, Nemethy Z. alpha7 Nicotinic acetylcholine receptors and their role in cognition. Brain Res Bull 2013, 93: 86–96.

    PubMed  CAS  Google Scholar 

  105. Sorger D, Scheunemann M, Vercouillie J, Grossmann U, Fischer S, Hiller A, et al. Neuroimaging of the vesicular acetylcholine transporter by a novel 4-[18F]fluoro-benzoyl derivative of 7-hydroxy-6-(4-phenyl-piperidin-1-yl)-octahydrobenzo[1,4]oxazines. Nucl Med Biol 2009, 36: 17–27.

    PubMed  CAS  Google Scholar 

  106. Giboureau N, Som IM, Boucher-Arnold A, Guilloteau D, Kassiou M. PET radioligands for the vesicular acetylcholine transporter (VAChT). Curr Top Med Chem 2010, 10: 1569–1583.

    PubMed  CAS  Google Scholar 

  107. Fujita M, Innis RB. In vivo molecular imaging: ligand development and research applications. In: Borroni E and Kupfer DJ (Eds.). Neuropsychopharmacology: The Fifth Generation of Progress. New York: Raven Press Ltd, 2002, Section 3: 411–425.

    Google Scholar 

  108. Blower PJ. Microautoradiography. In: Mather SJ (Ed.). Current Directions in Radiopharmaceutical Research and Development. Kluwer Academic Publisher, 1996: 219–232.

    Google Scholar 

  109. Lapchak PA, Araujo DM, Hefti F. Effects of chronic nerve growth factor treatment on hippocampal [3H]cytisine/nicotinic binding sites and presynaptic nicotinic receptor function following fimbrial transections. Neuroscience 1994, 60: 293–298.

    PubMed  CAS  Google Scholar 

  110. Rubboli F, Court JA, Sala C, Morris C, Perry E, Clementi F. Distribution of neuronal nicotinic receptor subunits in human brain. Neurochem Int 1994, 25: 69–71.

    PubMed  CAS  Google Scholar 

  111. Baddick CG, Marks MJ. An autoradiographic survey of mouse brain nicotinic acetylcholine receptors defined by null mutants. Biochem Pharmacol 2011, 82: 828–841.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Morley BJ, Kemp GE, Salvaterra P. α-Bungarotoxin binding sites in the CNS. Life Sci 1979, 24: 859–872.

    PubMed  CAS  Google Scholar 

  113. Whiteaker P, Davies AR, Marks MJ, Blagbrough IS, Potter BV, Wolstenholme AJ, et al. An autoradiographic study of the distribution of binding sites for the novel α7-selective nicotinic radioligand [3H]-methyllycaconitine in the mouse brain. Eur J Neurosci 1999, 11: 2689–2696.

    PubMed  CAS  Google Scholar 

  114. Deuther-Conrad W, Fischer S, Hiller A, Nielsen EO, Timmermann DB, Steinbach J, et al. Molecular imaging of α7 nicotinic acetylcholine receptors: design and evaluation of the potent radioligand [18F]NS10743. Eur J Nucl Med Mol Imaging 2009, 36: 791–800.

    PubMed  CAS  Google Scholar 

  115. Daly JW. Thirty years of discovering arthropod alkaloids in amphibian skin. J Nat Prod 1998, 61: 162–172.

    PubMed  CAS  Google Scholar 

  116. Avalos M, Parker MJ, Maddox FN, Carroll FI, Luetje CW. Effects of pyridine ring substitutions on affinity, efficacy, and subtype selectivity of neuronal nicotinic receptor agonist epibatidine. J Pharmacol Exp Ther 2002, 302: 1246–1252.

    PubMed  CAS  Google Scholar 

  117. Deuther-Conrad W, Patt JT, Feuerbach D, Wegner F, Brust P, Steinbach J. Norchloro-fluoro-homoepibatidine: specificity to neuronal nicotinic acetylcholine receptor subtypes in vitro. Farmaco 2004, 59: 785–792.

    PubMed  CAS  Google Scholar 

  118. Deuther-Conrad W, Patt JT, Lockman PR, Allen DD, Patt M, Schildan A, et al. Norchloro-fluoro-homoepibatidine (NCFHEB) — A promising radioligand for neuroimaging nicotinic acetylcholine receptors with PET. Eur Neuropsychopharmacol 2008, 18: 222–229.

    PubMed  CAS  Google Scholar 

  119. Smits R, Fischer S, Hiller A, Deuther-Conrad W, Wenzel B, Patt M, et al. Synthesis and biological evaluation of both enantiomers of [18F]flubatine, promising radiotracers with fast kinetics for the imaging of α4β2-nicotinic acetylcholine receptors. Bioorg Med Chem 2014, 22: 804–812.

    PubMed  CAS  Google Scholar 

  120. Patt JT, Spang JE, Westera G, Buck A, Schubiger PA. Synthesis and in Vivo studies of [C-11]N-methylepibatidine: comparison of the stereoisomers. Nucl Med Biol 1999, 26: 165–173.

    PubMed  CAS  Google Scholar 

  121. Molina PE, Ding YS, Carroll FI, Liang F, Volkow ND, Pappas N, et al. Fluoro-norchloroepibatidine: preclinical assessment of acute toxicity. Nucl Med Biol 1997, 24: 743–747.

    PubMed  CAS  Google Scholar 

  122. Gandiha A, Marshall IG. The effects of 2-(4-phenylpiperidino)-cyclohexanol (AH5183) on the acetylcholine content of, and output from, the chick biventer cervicis muscle preparation. Int J Neurosci 1973, 5: 191–196.

    PubMed  CAS  Google Scholar 

  123. Prior C, Marshall IG, Parsons SM. The pharmacology of vesamicol: an inhibitor of the vesicular acetylcholine transporter. Gen Pharmacol 1992, 23: 1017–1022.

    PubMed  CAS  Google Scholar 

  124. Hicks BW, Rogers GA, Parsons SM. Purification and characterization of a nonvesicular vesamicol-binding protein from electric organ and demonstration of a related protein in mammalian brain. J Neurochem 1991, 57: 509–519.

    PubMed  CAS  Google Scholar 

  125. Kovac M, Mavel S, Deuther-Conrad W, Meheux N, Glockner J, Wenzel B, et al. 3D QSAR study, synthesis, and in vitro evaluation of (+)-5-FBVM as potential PET radioligand for the vesicular acetylcholine transporter (VAChT). Bioorg Med Chem 2010, 18: 7659–7667.

    PubMed  CAS  Google Scholar 

  126. Mulholland GK, Jung YW, Wieland DM, Kilbourn MR, Kuhl DE. Synthesis of [18F] fluoroethoxy-benzovesamicol, a radiotracer for cholinergic neurons. J Labelled Comp Radiopharm 1993, 33: 583–591.

    CAS  Google Scholar 

  127. Petrou M, Frey KA, Kilbourn MR, Scott PJ, Raffel DM, Bohnen NI, et al. In vivo imaging of human cholinergic nerve terminals with (-)-5-18F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med 2014. doi:10.2967/jnumed.113.124792.

    Google Scholar 

  128. Parent MJ, Bedard MA, Aliaga A, Minuzzi L, Mechawar N, Soucy JP, et al. Cholinergic depletion in Alzheimer’s disease shown by [18F]FEOBV autoradiography. Int J Mol Imaging 2013, 2013: 205045.

    PubMed  PubMed Central  Google Scholar 

  129. Szymoszek A, Wenzel B, Scheunemann M, Steinbach J, Schüürmann G. First CoMFA characterization of vesamicol analogs as ligands for the vesicular acetylcholine transporter. J Med Chem 2008, 51: 2128–2136.

    PubMed  CAS  Google Scholar 

  130. Maier CA, Wünsch B. Novel spiropiperidines as highly potent and subtype selective σ-receptor ligands. Part 1. J Med Chem 2002, 45: 438–448.

    PubMed  CAS  Google Scholar 

  131. Maier CA, Wünsch B. Novel s receptor ligands. Part 2. SAR of spiro[[2]benzopyran-1,4′-piperidines] and spiro[[2] benzofuran-1,4′-piperidines] with carbon substituents in position 3. J Med Chem 2002, 45: 4923–4930.

    PubMed  CAS  Google Scholar 

  132. Maier CA, Wünsch B. Novel s receptor ligands, Part 3: Synthesis and SAR studies of 3-substituted 1′-benzylspiro[[2] benzoxepine-1,4′-piperidines]. Eur J Org Chem 2003: 714–720.

    Google Scholar 

  133. Große Maestrup E, Fischer S, Wiese C, Schepmann D, Hiller A, Deuther-Conrad W, et al. Evaluation of spirocyclic 3-(3-fluoropropyl)-2-benzofurans as σ1 receptor ligands for neuroimaging with positron emission tomography. J Med Chem 2009, 52: 6062–6072.

    Google Scholar 

  134. Große Maestrup E, Wiese C, Schepmann D, Brust P, Wünsch B. Synthesis, pharmacological activity and structure affinity relationships of spirocyclic σ1 receptor ligands with a (2-fluoroethyl) residue in 3-position. Bioorg Med Chem 2011, 19: 393–405.

    Google Scholar 

  135. Große Maestrup E, Wiese C, Schepmann D, Hiller A, Fischer S, Scheunemann M, et al. Synthesis of spirocyclic sigma(1) receptor ligands as potential PET radiotracers, structure-affinity relationships and in vitro metabolic stability. Bioorg Med Chem 2009, 17: 3630–3641.

    PubMed  Google Scholar 

  136. Holl K, Falck E, Köhler J, Schepmann D, Humpf HU, Brust P, et al. Synthesis, characterization, and metabolism studies of fluspidine enantiomers. Chem Med Chem 2013, 8: 2047–2056.

    PubMed  CAS  Google Scholar 

  137. Maisonial A, Grosse Maestrup E, Fischer S, Hiller A, Scheunemann M, Wiese C, et al. A 18F-labeled fluorobutyl-substituted spirocyclic piperidine derivative as a selective radioligand for PET Imaging of σ1 receptors. Chem Med Chem 2011, 6: 1401–1410.

    PubMed  CAS  Google Scholar 

  138. Maisonial A, Grosse Maestrup E, Wiese C, Hiller A, Schepmann D, Fischer S, et al. Synthesis, radiofluorination and pharmacological evaluation of a fluoromethyl spirocyclic PET tracer for central σ1 receptors and comparison with fluoroalkyl homologs. Bioorg Med Chem 2012, 20: 257–269.

    PubMed  CAS  Google Scholar 

  139. Fischer S, Wiese C, Grosse Maestrup E, Hiller A, Deuther-Conrad W, Scheunemann M, et al. Molecular imaging of sigma receptors: synthesis and evaluation of the potent σ1 selective radioligand [18F]fluspidine. Eur J Nucl Med Mol Imaging 2011, 38: 540–551.

    PubMed  CAS  Google Scholar 

  140. Bickel U. How to measure drug transport across the blood-brain barrier. NeuroRx 2005, 2: 15–26.

    PubMed  PubMed Central  Google Scholar 

  141. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012, 32: 1959–1972.

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Kessler RM, Ansari MS, de Paulis T, Schmidt DE, Clanton JA, Smith HE, et al. High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides. J Nucl Med 1991, 32: 1593–1600.

    PubMed  CAS  Google Scholar 

  143. Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx 2005, 2: 54–62.

    PubMed  PubMed Central  Google Scholar 

  144. Ecker GF, Noe CR. In silico prediction models for blood-brain barrier permeation. Curr Med Chem 2004, 11: 1617–1628.

    PubMed  CAS  Google Scholar 

  145. Gouverneur V, Müller K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. Singapore: World Scientific Publishing 2012.

    Google Scholar 

  146. Tressaud A, Haufe G (Eds.). Fluorine and Health, Molecular Imaging, Biomedical Materials and Pharmaceuticals. Elsevier Science, 2008.

    Google Scholar 

  147. Alauddin MM. Positron emission tomography (PET) imaging with 18F-based radiotracers. Am J Nucl Med Mol Imaging 2012, 2: 55–76.

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Ross TL, Wester HJ. 18F: Labeling chemistry and labeled compounds. In: Vértes A, Nagy S, Klencsár Z, Lovas R, Rösch F (Eds.). Handbook of Nuclear Chemistry: Radiochemistry and Radiopharmaceutical Chemistry in Life Sciences, 2nd Ed. Springer, 2011, 4: 2021–2071.

    Google Scholar 

  149. Schubiger PA, Lehmann L, Friebe M. PET Chemistry: The Driving Force in Molecular Imaging. Springer, 2007.

    Google Scholar 

  150. Bergman J, Solin O. Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol 1997, 24: 677–683.

    PubMed  CAS  Google Scholar 

  151. Forsback S, Marjamäki P, Eskola O, Bergman J, Rokka J, Grönroos T, et al. [18F]CFT synthesis and binding to monoamine transporters in rats. EJNMMI Res 2012, 2: 3.

    PubMed  PubMed Central  Google Scholar 

  152. Ermisch A, Brust P, Kretzschmar R, Rühle HJ. Peptides and Blood-Brain Barrier Transport. Physiol Rev 1993, 73: 489–527.

    PubMed  CAS  Google Scholar 

  153. Coenen HH, Hamacher K, Schüller M, Stöcklin G, Klatte B, Knöchel A. Process for the preparation of fluorine-18 labelled compounds by nucleophilic exchange. EP 0167103 A2, 1985.

    Google Scholar 

  154. Coenen HH, Colosimo M, Schüller M, Stöcklin G. Preparation of n.c.a. [18F]CH2BrF via aminopolyether supported nucleophilic substitution. J Labelled Compd Radiopharm 1986, 23: 587–595.

    CAS  Google Scholar 

  155. Roeda D, Dolle F. Aliphatic nucleophilic radiofluorination. Curr Radiopharm 2010, 3: 81–108

    CAS  Google Scholar 

  156. Cai LS, Lu SY, Pike VW. Chemistry with [18F]fluoride ion. European J Org Chem 2008: 2853–2873.

    Google Scholar 

  157. Hoepping A, Scheunemann M, Fischer S, Deuther-Conrad W, Hiller A, Wegner F, et al. Radiosynthesis and biological evaluation of an 18F-labeled derivative of the novel pyrazolopyrimidine sedative-hypnotic agent indiplon. Nucl Med Biol 2007, 34: 559–570.

    PubMed  CAS  Google Scholar 

  158. Deuther-Conrad W, Fischer S, Scheunemann M, Hiller A, Diekers M, Friemel A, et al. GABAA receptor specific pyrazolopyrimidines as potential imaging agents: In vivo characteristics of a new 18F-labelled Indiplon derivative. Curr Radiopharm 2009, 2: 24–31.

    CAS  Google Scholar 

  159. Fischer S, Hiller A, Scheunemann M, Deuther-Conrad W, Hoepping A, Diekers M, et al. Radiosynthesis of novel 18F-labelled derivatives of indiplon as potential GABAA receptor imaging tracers for PET. J Labelled Comp Radiopharm 2008, 51: 123–131.

    CAS  Google Scholar 

  160. Schirrmacher R, Bradtmöller G, Schirrmacher E, Thews O, Tillmanns J, Siessmeier T, et al. 18F-labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew Chem Int Ed Engl 2006, 45: 6047–6050.

    PubMed  CAS  Google Scholar 

  161. Römer J, Füchtner F, Steinbach J, Kasch H. Automated synthesis of 16α-[18F]fluoroestradiol-3,17β-disulphamate. Appl Radiat Isot 2001, 55: 631–639.

    PubMed  Google Scholar 

  162. Ermert J, Coenen HH. Nucleophilic 18F-fluorination of complex molecules in activated carbocyclic aromatic position. Curr Radiopharm 2010, 3: 109–126

    CAS  Google Scholar 

  163. Fischer S, Hiller A, Smits R, Hoepping A, Funke U, Wenzel B, et al. Radiosynthesis of racemic and enantiomerically pure (-)-[18F]flubatine-A promising PET radiotracer for neuroimaging of α4β2 nicotinic acetylcholine receptors. Appl Radiat Isot 2013, 74C: 128–136.

    Google Scholar 

  164. Patt JT, Deuther-Conrad W, Wohlfarth K, Feuerbach D, Brust P, Steinbach J. Norchloro-fluoro-homoepibatidine: 18F-labelling and evaluation of affinity and selectivity at neuronal nicotinic acetylcholine receptors. J Labelled Compd Radiopharm 2003, 46(S1): S 168.

    Google Scholar 

  165. Patt M, Schildan A, Habermann B, Fischer S, Hiller A, Deuther-Conrad W, et al. Fully automated radiosynthesis of both enantiomers of [18F]Flubatine under GMP conditions for human application. Appl Radiat Isot 2013, 80: 7–11.

    PubMed  CAS  Google Scholar 

  166. Hockley BG, Stewart MN, Sherman P, Quesada C, Kilbourn MR, Albin RL, et al. (-)-[18F]Flubatine: evaluation in rhesus monkeys and a report of the first fully automated radiosynthesis validated for clinical use. J Labelled Comp Radiopharm 2013, 56: 595–599.

    PubMed  CAS  Google Scholar 

  167. Rühl T, Deuther-Conrad W, Fischer S, Günther R, Hennig L, Krautscheid H, et al. Cannabinoid receptor type 2 (CB2)-selective N-aryl-oxadiazolyl-propionamides: synthesis, radiolabelling, molecular modelling and biological evaluation. Org Med Chem Lett 2012, 2: 32.

    PubMed  PubMed Central  Google Scholar 

  168. Teodoro R, Moldovan RP, Lueg C, Günther R, Donat CK, Ludwig FA, et al. Radiofluorination and biological evaluation of N-aryl-oxadiazolyl-propionamides as potential radioligands for PET imaging of cannabinoid CB2 receptors. Org Med Chem Lett 2013, 3: 11.

    PubMed  CAS  PubMed Central  Google Scholar 

  169. Löser R, Fischer S, Hiller A, Köckerling M, Funke U, Maisonial A, et al. Use of 3-[18F]fluoropropanesulfonyl chloride as a prosthetic agent for the radiolabelling of amines: Investigation of precursor molecules, labelling conditions and enzymatic stability of the corresponding sulfonamides. Beilstein J Org Chem 2013, 9: 1002–1011.

    PubMed  PubMed Central  Google Scholar 

  170. Wüst F, Köhler L, Berndt M, Pietzsch J. Systematic comparison of two novel, thiol-reactive prosthetic groups for 18F labeling of peptides and proteins with the acylation agent succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Amino Acids 2009, 36: 283–295.

    Google Scholar 

  171. Serdons K, Verbruggen A, Bormans GM. Developing new molecular imaging probes for PET. Methods 2009, 48: 104–111.

    PubMed  CAS  Google Scholar 

  172. Pretze M, Kuchar M, Bergmann R, Steinbach J, Pietzsch J, Mamat C. An efficient bioorthogonal strategy using CuAAC click chemistry for radiofluorinations of SNEW peptides and the role of copper depletion. Chem Med Chem 2013, 8: 935–945.

    PubMed  CAS  Google Scholar 

  173. Pretze M, Pietzsch D, Mamat C. Recent trends in bioorthogonal click-radiolabeling reactions using fluorine-18. Molecules 2013, 18: 8618–8665.

    PubMed  CAS  Google Scholar 

  174. Ramenda T, Kniess T, Bergmann R, Steinbach J, Wüst F. Radiolabelling of proteins with fluorine-18 via click chemistry. Chem Commun (Camb) 2009: 7521–7523.

    Google Scholar 

  175. Ramenda T, Steinbach J, Wüst F. 4-[18F]Fluoro-N-methyl-N-(propyl-2-yn-1-yl)benzenesulfonamide ([18F]F-SA): a versatile building block for labeling of peptides, proteins and oligonucleotides with fluorine-18 via Cu(I)-mediated click chemistry. Amino Acids 2013, 44: 1167–1180.

    PubMed  CAS  Google Scholar 

  176. Kniess T, Laube M, Bergmann R, Sehn F, Graf F, Steinbach J, et al. Radiosynthesis of a 18F-labeled 2,3-diarylsubstituted indole via McMurry coupling for functional characterization of cyclooxygenase-2 (COX-2) in vitro and in vivo. Bioorg Med Chem 2012, 20: 3410–3421.

    PubMed  CAS  Google Scholar 

  177. Funke U, Fischer S, Hiller A, Scheunemann M, Deuther-Conrad W, Brust P, et al. 3-(4-(6-Fluoroalkoxy-3,4-dihydroisoquinoline-2(1H)-yl)cyclohexyl)-1H-indol e-5-carbonitriles for SERT imaging: chemical synthesis, evaluation in vitro and radiofluorination. Bioorg Med Chem Lett 2008, 18: 4727–4730.

    PubMed  CAS  Google Scholar 

  178. Funke U, Schwan G, Maisonial A, Scheunemann M, Deuther-Conrad W, Fischer S, et al. Radiosynthesis and radiotracer properties of a 7-(2-[18F]fluoroethoxy)-6-methoxypyrrolidinylquinazoline for imaging of phosphodiesterase 10A with PET. Pharmaceuticals (Basel) 2012, 5: 169–188.

    CAS  Google Scholar 

  179. Sorger D, Scheunemann M, Grossmann U, Fischer S, Vercouille J, Hiller A, et al. A new 18F-labeled fluoroacetylmorpholino derivative of vesamicol for neuroimaging of the vesicular acetylcholine transporter. Nucl Med Biol 2008, 35: 185–195.

    PubMed  CAS  Google Scholar 

  180. Hoepping A, Scheunemann M, Fischer S, Deuther-Conrad W, Hiller A, Wegner F, et al. Radiosynthesis and biological evaluation of an 18F-labeled derivative of the novel pyrazolopyrimidine sedative-hypnotic agent indiplon. Nucl Med Biol 2007, 34: 559–570.

    PubMed  CAS  Google Scholar 

  181. Donat CK, Schuhmann MU, Voigt C, Nieber K, Deuther-Conrad W, Brust P. Time-dependent alterations of cholinergic markers after experimental traumatic brain injury. Brain Res 2008, 1246: 167–177.

    PubMed  CAS  Google Scholar 

  182. Perry DC, Kellar KJ. [3H]epibatidine labels nicotinic receptors in rat brain: an autoradiographic study. J Pharmacol Exp Ther 1995, 275: 1030–1034.

    PubMed  CAS  Google Scholar 

  183. Vaupel DB, Mukhin AG, Kimes AS, Horti AG, Koren AO, London ED. In vivo studies with [125I]5-I-A-85380, a nicotinic acetylcholine receptor radioligand. Neuroreport 1998, 9: 2311–2317.

    PubMed  CAS  Google Scholar 

  184. Davies AR, Hardick DJ, Blagbrough IS, Potter BV, Wolstenholme AJ, Wonnacott S. Characterisation of the binding of [3H]methyllycaconitine: a new radioligand for labelling α7-type neuronal nicotinic acetylcholine receptors. Neuropharmacology 1999, 38: 679–690.

    PubMed  CAS  Google Scholar 

  185. No-authors-listed. Indiplon. Indiplon modified-release, indiplon MR, NBI 34060, NBI 34060 modified-release, NBI 34060 MR. Drugs R D 2002, 3: 197–199.

  186. Hoepping A, Diekers M, Deuther-Conrad W, Scheunemann M, Fischer S, Hiller A, et al. Synthesis of fluorine substituted pyrazolopyrimidines as potential leads for the development of PET-imaging agents for the GABAA receptors. Bioorg Med Chem 2008, 16: 1184–1194.

    PubMed  CAS  Google Scholar 

  187. Brust P, Scheffel U, Szabo Z. Radioligands for the study of the 5-HT transporter in vivo. IDrugs 1999, 2: 129–145.

    PubMed  CAS  Google Scholar 

  188. Kretzschmar M, Brust P, Zessin J, Cumming P, Bergmann R, Johannsen B. Autoradiographic imaging of the serotonin transporter in the brain of rats and pigs using S-([18F] Fluoromethyl)-(+)-McN5652. Eur Neuropsychopharmacol 2003, 13: 387–397.

    PubMed  CAS  Google Scholar 

  189. Kung MP, Stevenson DA, Plössl K, Meegalla SK, Beckwith A, Essman WD, et al. [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. European J Nucl Med 1997, 24: 372–380.

    CAS  Google Scholar 

  190. Kung HF, Kung MP, Wey SP, Lin KJ, Yen TC. Clinical acceptance of a molecular imaging agent: a long march with [Tc-99m]TRODAT. Nucl Med Biol 2007, 34: 787–789.

    PubMed  CAS  Google Scholar 

  191. Tan PZ, Baldwin RM, Van Dyck CH, Al-Tikriti M, Roth B, Khan N, et al. Characterization of radioactive metabolites of 5-HT2A receptor PET ligand [18F]altanserin in human and rodent. Nucl Med Biol 1999, 26: 601–608.

    PubMed  CAS  Google Scholar 

  192. van Dyck CH, Tan PZ, Baldwin RM, Amici LA, Garg PK, Ng CK, et al. PET quantification of 5-HT2A receptors in the human brain: a constant infusion paradigm with [18F] altanserin. J Nucl Med 2000, 41: 234–241.

    PubMed  Google Scholar 

  193. Liptrot M, Adams KH, Martiny L, Pinborg LH, Lonsdale MN, Olsen NV, et al. Cluster analysis in kinetic modelling of the brain: a noninvasive alternative to arterial sampling. Neuroimage 2004, 21: 483–493.

    PubMed  Google Scholar 

  194. Bergström KA, Halldin C, Kuikka JT, Swahn CG, Tiihonen J, Hiltunen J, et al. Lipophilic metabolite of [123I]β-CIT in human plasma may obstruct quantitation of the dopamine transporter. Synapse 1995, 19: 297–300.

    PubMed  Google Scholar 

  195. Lundkvist C, Halldin C, Swahn CG, Ginovart N, Farde L. Different brain radioactivity curves in a PET study with [11C] β-CIT labelled in two different positions. Nucl Med Biol 1999, 26: 343–350.

    PubMed  CAS  Google Scholar 

  196. Zoghbi SS, Shetty HU, Ichise M, Fujita M, Imaizumi M, Liow JS, et al. PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements. J Nucl Med 2006, 47: 520–527.

    PubMed  CAS  Google Scholar 

  197. Shetty HU, Zoghbi SS, Liow JS, Ichise M, Hong J, Musachio JL, et al. Identification and regional distribution in rat brain of radiometabolites of the dopamine transporter PET radioligand [11C]PE2I. Eur J Nucl Med Mol Imaging 2007, 34: 667–678.

    PubMed  CAS  Google Scholar 

  198. Peyronneau MA, Saba W, Dolle F, Goutal S, Coulon C, Bottlaender M, et al. Difficulties in dopamine transporter radioligand PET analysis: the example of LBT-999 using [18F] and [11C] labelling: part II: Metabolism studies. Nucl Med Biol 2012, 39: 347–359.

    PubMed  CAS  Google Scholar 

  199. Bergström KA, Halldin C, Hall H, Lundkvist C, Ginovart N, Swahn CG, et al. In vitro and in vivo characterisation of nor-β-CIT: a potential radioligand for visualisation of the serotonin transporter in the brain. European J Nucl Med 1997, 24: 596–601.

    Google Scholar 

  200. Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 2001, 14: 611–650.

    PubMed  CAS  Google Scholar 

  201. Carroll FI, Blough BE, Nie Z, Kuhar MJ, Howell LL, Navarro HA. Synthesis and monoamine transporter binding properties of 3beta-(3′,4′-disubstituted phenyl)tropane-2beta-carboxylic acid methyl esters. J Med Chem 2005, 48: 2767–2771.

    PubMed  CAS  Google Scholar 

  202. Mori T, Sun LQ, Kobayashi M, Kiyono Y, Okazawa H, Furukawa T, et al. Preparation and evaluation of ethyl [18F] fluoroacetate as a proradiotracer of [18F]fluoroacetate for the measurement of glial metabolism by PET. Nucl Med Biol 2009, 36: 155–162.

    PubMed  CAS  Google Scholar 

  203. Dienel GA, Popp D, Drew PD, Ball K, Krisht A, Cruz NF. Preferential labeling of glial and meningial brain tumors with [2-14C]acetate. J Nucl Med 2001, 42: 1243–1250.

    PubMed  CAS  Google Scholar 

  204. Lear JL, Ackermann RF. Evaluation of radiolabeled acetate and fluoroacetate as potential tracers of cerebral oxidative metabolism. Metab Brain Dis 1990, 5: 45–56.

    PubMed  CAS  Google Scholar 

  205. Davson H, Segal MB. Physiology of the CSF and Blood-Brain Barriers. Boca Raton, USA: CRC Press, 1996.

    Google Scholar 

  206. Rogers GA, Stone-Elander S, Ingvar M, Eriksson L, Parsons SM, Widen L. 18F-labelled vesamicol derivatives: syntheses and preliminary in vivo small animal positron emission tomography evaluation. Nucl Med Biol 1994, 21: 219–230.

    PubMed  CAS  Google Scholar 

  207. Tu LQ, Wright PF, Rix CJ, Ahokas JT. Is fluoroacetate-specific defluorinase a glutathione S-transferase? Comp Biochem Physiol C Toxicol Pharmacol 2006, 143: 59–66.

    PubMed  CAS  Google Scholar 

  208. Johnson JA, el Barbary A, Kornguth SE, Brugge JF, Siegel FL. Glutathione S-transferase isoenzymes in rat brain neurons and glia. J Neurosci 1993, 13: 2013–2023.

    PubMed  CAS  Google Scholar 

  209. Brust P, Hinz R, Kuwabara H, Hesse S, Zessin J, Pawelke B, et al. In vivo measurement of the serotonin transporter with (S)-([18F]fluoromethyl)-(+)-McN5652. Neuropsychopharmacology 2003, 28: 2010–2019.

    PubMed  CAS  Google Scholar 

  210. Hesse S, Brust P, Mäding P, Becker GA, Patt M, Seese A, et al. Imaging of the brain serotonin transporters (SERT) with 18F-labelled fluoromethyl-McN5652 and PET in humans. Eur J Nucl Med Mol Imaging 2012, 39: 1001–1011.

    PubMed  CAS  Google Scholar 

  211. Szabo Z, Scheffel U, Mathews WB, Ravert HT, Szabo K, Kraut M, et al. Kinetic analysis of [11C]McN5652: a serotonin transporter radioligand. J Cereb Blood Flow Metab 1999, 19: 967–981.

    PubMed  CAS  PubMed Central  Google Scholar 

  212. Brust P, Patt JT, Deuther-Conrad W, Becker G, Patt M, Schildan A, et al. In vivo measurement of nicotinic acetylcholine receptors with [18F]norchloro-fluoro-homoepibatidine. Synapse 2008, 62: 205–218.

    PubMed  CAS  Google Scholar 

  213. Patt M, Becker GA, Grossmann U, Habermann B, Schildan A, Wilke S, et al. Evaluation of metabolism, plasma protein binding and other biological parameters after administration of (-)-[18F]flubatine in humans. Nucl Med Biol 2014. doi. org/10.1016/j.nucmedbio.2014.1003.1018.

    Google Scholar 

  214. Becker GA, Wilke S, Schönknecht P, Patt M, Luthardt J, Hesse S, et al. Comparison of (-)-[18F]-flubatine and 2-[18F] FA-85380 binding to nicotinic alpha4beta2 acetylcholine receptors in human brains. Eur J Nucl Med Mol Imaging 2013, 40(Suppl. 2): S271.

    Google Scholar 

  215. Fasinu P, Bouic PJ, Rosenkranz B. Liver-based in vitro technologies for drug biotransformation studies — a review. Curr Drug Metab 2012, 13: 215–224.

    PubMed  CAS  Google Scholar 

  216. Davydov DR. Microsomal monooxygenase as a multienzyme system: the role of P450-P450 interactions. Expert Opin Drug Metab Toxicol 2011, 7: 543–558.

    PubMed  CAS  PubMed Central  Google Scholar 

  217. Stabin MG. Fundamentals of Nuclear Medicine Dosimetry. Springer, 2008.

    Google Scholar 

  218. van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target 1998, 6: 151–165.

    PubMed  Google Scholar 

  219. Ball K, Bouzom F, Scherrmann JM, Walther B, Decleves X. Physiologically based pharmacokinetic modelling of drug penetration across the blood-brain barrier-towards a mechanistic IVIVE-based approach. AAPS J 2013, 15: 913–932.

    PubMed  CAS  PubMed Central  Google Scholar 

  220. Shawahna R, Decleves X, Scherrmann JM. Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes. Curr Drug Metab 2013, 14: 120–136.

    PubMed  CAS  Google Scholar 

  221. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 2011, 117: 333–345.

    PubMed  CAS  Google Scholar 

  222. Rötering S, Scheunemann M, Fischer S, Hiller A, Peters D, Deuther-Conrad W, et al. Radiosynthesis and first evaluation in mice of [18F]NS14490 for molecular imaging of α7 nicotinic acetylcholine receptors. Bioorg Med Chem 2013, 21: 2635–2642.

    PubMed  Google Scholar 

  223. Syvänen S, Lindhe O, Palner M, Kornum BR, Rahman O, Langström B, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 2009, 37: 635–643.

    PubMed  Google Scholar 

  224. Wagner HN, Jr., Burns HD, Dannals RF, Wong DF, Langström B, Duelfer T, et al. Imaging dopamine receptors in the human brain by positron tomography. Science 1983, 221: 1264–1266.

    PubMed  CAS  Google Scholar 

  225. Ehrin E, Farde L, de Paulis T, Eriksson L, Greitz T, Johnström P, et al. Preparation of 11C-labelled Raclopride, a new potent dopamine receptor antagonist: preliminary PET studies of cerebral dopamine receptors in the monkey. Int J Appl Radiat Isot 1985, 36: 269–273.

    PubMed  CAS  Google Scholar 

  226. Chan GL, Holden JE, Stoessl AJ, Doudet DJ, Wang Y, Dobko T, et al. Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med 1998, 39: 792–797.

    PubMed  CAS  Google Scholar 

  227. Parsey RV, Arango V, Olvet DM, Oquendo MA, Van Heertum RL, John Mann J. Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron emission tomography. J Cereb Blood Flow Metab 2005, 25: 785–793.

    PubMed  CAS  Google Scholar 

  228. Biver F, Goldman S, Luxen A, Monclus M, Forestini M, Mendlewicz J, et al. Multicompartmental study of F-18 altanserin binding to brain 5HT2 receptors in humans using positron emission tomography. Eur J Nucl Med 1994, 21: 937–946.

    PubMed  CAS  Google Scholar 

  229. Itoh T, Tanaka M, Kobayashi K, Suzuki K, Inoue O. Binding kinetics of 11C-N-methyl piperidyl benzilate (11C-NMPB) in a rhesus monkey brain using the cerebellum as a reference region. Ann Nucl Med 2005, 19: 499–505.

    PubMed  CAS  Google Scholar 

  230. Deuther-Conrad W, Fischer S, Hiller A, Becker G, Cumming P, Xiong G, et al. Assessment of α7 nicotinic acetylcholine receptor availability in porcine brain with [18F]NS10743. Eur J Nucl Med Mol Imaging 2011, 38: 1541–1549.

    PubMed  CAS  Google Scholar 

  231. Flesher JE, Scheffel U, London ED, Frost JJ. In vivo labeling of nicotinic cholinergic receptors in brain with [3H]cytisine. Life Sci 1994, 54: 1883–1890.

    PubMed  CAS  Google Scholar 

  232. Ishiwata K, Kawamura K, Wang WF, Tsukada H, Harada N, Mochizuki H, et al. Evaluation of in vivo selective binding of [11C]doxepin to histamine H1 receptors in five animal species. Nucl Med Biol 2004, 31: 493–502.

    PubMed  CAS  Google Scholar 

  233. Kish SJ, Furukawa Y, Chang LJ, Tong J, Ginovart N, Wilson A, et al. Regional distribution of serotonin transporter protein in postmortem human brain: Is the cerebellum a SERT-free brain region? Nucl Med Biol 2005, 32: 123–128.

    PubMed  CAS  Google Scholar 

  234. Brust P, Hesse S, Müller U, Szabo Z. Neuroimaging of the serotonin transporter — possibilities and pitfalls. Curr Psychiat Rev 2006, 2: 111–149.

    CAS  Google Scholar 

  235. Marjamäki P, Zessin J, Eskola O, Grönroos T, Haaparanta M, Bergman J, et al. S-[18F]fluoromethyl-(+)-McN5652, a PET tracer for the serotonin transporter: Evaluation in rats. Synapse 2003, 47: 45–53.

    PubMed  Google Scholar 

  236. Deuther-Conrad W, Maisonial A, Patt M, Stittsworth S, Becker G, Habermann B, et al. Discovery of enantioselective suitability of (R)-(+)- and (S)-(-)-[18F]fluspidine for σ1 receptor imaging. J Label Comp Radiopharm 2013, 56: S55.

    Google Scholar 

  237. Brust P, Deuther-Conrad W, Becker G, Patt M, Donat CK, Stittsworth S, et al. Distinctive in vivo kinetics of the new sigma1 receptor ligands (R)-(+)- and (S)-(-)-18F-fluspidine in porcine brain. J Nucl Med 2014, pii: jnumed.114. 137562.

    Google Scholar 

  238. Leenders KL, Gibbs JM, Frackowiak RS, Lammertsma AA, Jones T. Positron emission tomography of the brain: new possibilities for the investigation of human cerebral pathophysiology. Prog Neurobiol 1984, 23: 1–38.

    PubMed  CAS  Google Scholar 

  239. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984, 15: 217–227.

    PubMed  CAS  Google Scholar 

  240. Miyoshi S, Mitsuoka K, Nishimura S, Veltkamp SA. Radioisotopes in Drug Research and Development: Focus on Positron Emission Tomography. In: Singh N (Ed). Radioisotopes — Applications in Bio-Medical Science. InTech, 2011: 93–113.

    Google Scholar 

  241. Yanai K, Ido T, Ishiwata K, Hatazawa J, Watanuki S, Takahashi T, et al. Characteristics of specific in vivo labeling of neuroleptic binding sites with 3-N-[11C]methylspiperone. European J Nucl Med 1986, 11: 438–443.

    CAS  Google Scholar 

  242. Brust P, Shaya EK, Jeffries KJ, Dannals RF, Ravert HT, Wilson AA, et al. Effects of vasopressin on blood-brain transfer of methionine in dogs. J Neurochem 1992, 59: 1421–1429.

    PubMed  CAS  Google Scholar 

  243. Kong FL, Ford RJ, Yang DJ. Managing lymphoma with non-FDG radiotracers: current clinical and preclinical applications. Biomed Res Int 2013, 2013: 626910.

    PubMed  PubMed Central  Google Scholar 

  244. Prenen GH, Go KG, Paans AM, Zuiderveen F, Vaalburg W, Kamman RL, et al. Positron emission tomographical studies of 1-11C-acetoacetate, 2-18F-fluoro-deoxy-D-glucose, and L-1-11C-tyrosine uptake by cat brain with an experimental lesion. Acta Neurochirurgica 1989, 99: 166–172.

    PubMed  CAS  Google Scholar 

  245. Ginovart N, Wilson AA, Meyer JH, Hussey D, Houle S. [11C]-DASB, a tool for in vivo measurement of SSRI-induced occupancy of the serotonin transporter: PET characterization and evaluation in cats. Synapse 2003, 47: 123–133.

    PubMed  CAS  Google Scholar 

  246. Bauer R, Bergmann R, Beyer GJ, Manfrass P, Steinbach J, Kretzschmar M, et al. Investigations of cerebral glucose utilization into the newborn brain: a [18F]-FDG positron emission tomography study using a high resolution multiwire proportional chamber detector device. Exp Pathol 1991, 42: 229–233.

    PubMed  CAS  Google Scholar 

  247. Sauleau P, Lapouble E, Val-Laillet D, Malbert CH. The pig model in brain imaging and neurosurgery. Animal 2009, 3: 1138–1151.

    PubMed  CAS  Google Scholar 

  248. Alstrup AKO, Smith DF. PET neuroimaging in pigs. Scand J Lab Anim Sci 2012, 39: 25–45.

    Google Scholar 

  249. Herzog H. PET/MRI: challenges, solutions and perspectives. Z Med Phys 2012, 22: 281–298.

    PubMed  Google Scholar 

  250. Herzog H, van den Hoff J. Combined PET/MR systems: an overview and comparison of currently available options. Q J Nucl Med Mol Imaging 2012, 56: 247–267.

    PubMed  CAS  Google Scholar 

  251. Xi W, Tian M, Zhang H. Molecular imaging in neuroscience research with small-animal PET in rodents. Neurosci Res 2011, doi:10.1016/j.neures.2010.12.017.

    Google Scholar 

  252. Lancelot S, Zimmer L. Small-animal positron emission tomography as a tool for neuropharmacology. Trends Pharmacol Sci 2010, 31: 411–417.

    PubMed  CAS  Google Scholar 

  253. Syvänen S, Labots M, Tagawa Y, Eriksson J, Windhorst AD, Lammertsma AA, et al. Altered GABAA receptor density and unaltered blood-brain barrier transport in a kainate model of epilepsy: an in vivo study using 11C-flumazenil and PET. J Nucl Med 2012, 53: 1974–1983.

    PubMed  Google Scholar 

  254. Gunn RN, Gunn SR, Turkheimer FE, Aston JA, Cunningham VJ. Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab 2002, 22: 1425–1439.

    PubMed  CAS  Google Scholar 

  255. Schmidt KC, Turkheimer FE. Kinetic modeling in positron emission tomography. Quarterly J Nucl Med 2002, 46: 70–85.

    CAS  Google Scholar 

  256. Laruelle M, Slifstein M, Huang Y. Positron emission tomography: imaging and quantification of neurotransporter availability. Methods 2002, 27: 287–299.

    PubMed  CAS  Google Scholar 

  257. Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis—compartmental model. Ann Nucl Med 2006, 20: 583–588.

    PubMed  CAS  Google Scholar 

  258. van den Hoff J. Principles of quantitative positron emission tomography. Amino Acids 2005, 29: 341–353.

    PubMed  Google Scholar 

  259. van den Hoff J. Kinetic Modelling. In: Kiessling F, Pichler BJ. Small Animal Imaging: Basics and Practical Guide. Springer, 2010: 387–404.

    Google Scholar 

  260. Brust P, Zessin J, Kuwabara H, Pawelke B, Kretzschmar M, Hinz R, et al. Positron emission tomography imaging of the serotonin transporter in the pig brain using [11C](+)-McN5652 and S-([18F]fluoromethyl)-(+)-McN5652. Synapse 2003, 47: 143–151.

    PubMed  CAS  Google Scholar 

  261. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical C-11 raclopride studies. J Cereb Blood Flow Metab 1996, 16: 42–52.

    PubMed  CAS  Google Scholar 

  262. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996, 4: 153–158.

    PubMed  CAS  Google Scholar 

  263. Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics 2013, 3: 802–815.

    PubMed  PubMed Central  Google Scholar 

  264. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983, 3: 1–7.

    PubMed  CAS  Google Scholar 

  265. Patlak CS, Blasberg RG. Graphical evaluation of bloodto-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985, 5: 584–590.

    PubMed  CAS  Google Scholar 

  266. Gjedde A. High-and low-affinity transport of D-glucose from blood to brain. J Neurochem 1981, 36: 1463–1471.

    PubMed  CAS  Google Scholar 

  267. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990, 10: 740–747.

    PubMed  CAS  Google Scholar 

  268. Wang JZ, Qiu P, Liu RKJ, Szabo Z. Model-Based receptor quantization analysis for PET parametric imaging. Conf Proc IEEE Eng Med Biol Soc 2005, 6: 5908–5911.

    PubMed Central  Google Scholar 

  269. Dennan S, Decristoforo Ce. The Radiopharmacy. A Technologist’s Guide. European Association of Nuclear Medicine, 2008.

    Google Scholar 

  270. Elsinga P, Todde S, Penuelas I, Meyer G, Farstad B, Faivre-Chauvet A, et al. Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. Eur J Nucl Med Mol Imaging 2010, 37: 1049–1062.

    PubMed  CAS  PubMed Central  Google Scholar 

  271. Verbruggen A, Coenen HH, Deverre JR, Guilloteau D, Langstrom B, Salvadori PA, et al. Guideline to regulations for radiopharmaceuticals in early phase clinical trials in the EU. Eur J Nucl Med Mol Imaging 2008, 35: 2144–2151.

    PubMed  CAS  Google Scholar 

  272. Zessin J, Eskola O, Steinbach J, Bergman J, Marjamäki P, Brust P, et al. Synthesis and first biological evaluation of the [18F]fluormethyl-analog of (+)-MCN5652, a tracer for imaging the serotonin transporter. Nuklearmedizin 2000, 39: A36. [Article in German language]

    Google Scholar 

  273. Petrou M, Koeppe R, Scott P, Bohnen N, Kilbourn M, Frey K. PET imaging of the vesicular acetylcholine transporter. J Nucl Med 2012, 53(Supplement 1): 290.

    Google Scholar 

  274. Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedström CG, et al. Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci U S A 1985, 82: 3863–3867.

    PubMed  CAS  PubMed Central  Google Scholar 

  275. Maziere M, Hantraye P, Prenant C, Sastre J, Comar D. Synthesis of ethyl 8-fluoro-5,6-dihydro-5-[11C]methyl-6-oxo-4H-imidazo [1,5-a] [1,4]benzodiazepine-3-carboxylate (RO 15.1788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Int J Appl Radiat Isot 1984, 35: 973–976.

    PubMed  CAS  Google Scholar 

  276. Rowland DJ, Cherry SR. Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med 2008, 38: 209–222.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Brust.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brust, P., van den Hoff, J. & Steinbach, J. Development of 18F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci. Bull. 30, 777–811 (2014). https://doi.org/10.1007/s12264-014-1460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1460-6

Keywords

Navigation