Skip to main content

Advertisement

Log in

Schizandrin prevents dexamethasone-induced cognitive deficits

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

To model glucocorticoid-induced cognitive impairment and evaluate the neuroprotection by schizandrin (Sch) against dexamethasone (Dex)-induced neurotoxicity in vivo and in vitro.

Methods

Cerebral cortical cells from neonatal Sprague-Dawley rats (within 24 hours after birth) were cultured for 9 days, and then treated with Dex (10−4, 10−5, 10−6 or 10−7 mol/L) for 24 h or pretreated with 10−4 mol/L Dex for 24 h followed by 10, 20, 40, or 80 μmol/L Sch for 48 h. Cell viability was assessed using the MTT assay. Immunofluorescence and real-time PCR for MAP2 were performed to confirm the effects of Dex on neurite outgrowth. In vivo, kunming mice were randomly divided into six groups: control [(intragastric (i.g.) vehicle for 42 days]; Dex group I (5 mg/kg·d−1 Dex i.g. treatment for 28 days followed by i.g. vehicle for 14 days); Dex group II (Dex i.g. for 42 days); Dex + Sch (Dex i.g. for 28 days followed by 5, 15, or 45 mg/kg·d−1 Sch i.g. for 14 days). Learning and memory were assessed by Morris water maze test. Histological examination was used to assess pathology and apoptosis in neurons.

Results

Compared to the Dex groups, Sch increased cell viability in a dosedependent manner, improved performance in the Morris water maze and ameliorated the morphological changes.

Conclusion

Sch has neuroprotective effects against insults induced by glucocorticoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joels M. Corticosteroid effects in the brain: U-shape it. Trends Pharmacol Sci 2006, 27:244–250.

    Article  PubMed  CAS  Google Scholar 

  2. Joels M, Krugers HJ. LTP after stress: up or down? Neural Plast 2007, 93202.

  3. Roozendaal B. 1999 Curt P. Richter award. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology 2000, 25:213–238.

    Article  PubMed  CAS  Google Scholar 

  4. Salehi B, Cordero MI, Sandi C. Learning under stress: the inverted-U-shape function revisited. Learn Mem 2010, 17:522–530.

    Article  PubMed  Google Scholar 

  5. Sandi C, Pinelo-Nava MT. Stress and memory: behavioral effects and neurobiological mechanisms. Neural Plast 2007, 2007:78970.

    Article  PubMed  Google Scholar 

  6. Michiels V, Cluydts R. Neuropsychological functioning in chronic fatigue syndrome: a review. Acta Psychiatr Scand 2001, 103:84–93.

    Article  PubMed  CAS  Google Scholar 

  7. Starkman MN, Giordani B, Berent S, Schork MA, Schteingart DE. Elevated cortisol levels in Cushing’s disease are associated with cognitive decrements. Psychosom Med 2001, 63:985–993.

    PubMed  CAS  Google Scholar 

  8. Kwon DY, Kim da S, Yang HJ, Park S. The lignan-rich fractions of Fructus Schisandrae improve insulin sensitivity via the PPAR-gamma pathways in in vitro and in vivo studies. J Ethnopharmacol 2011, 135:455–462.

    Article  PubMed  CAS  Google Scholar 

  9. Lin RD, Mao YW, Leu SJ, Huang CY, Lee MH. The immunoregulatory effects of Schisandra chinensis and its constituents on human monocytic leukemia cells. Molecules 2011, 16:4836–4849.

    Article  PubMed  CAS  Google Scholar 

  10. Lam PY, Leong PK, Chen N, Ko KM. Schisandrin B enhances the glutathione redox cycling and protects against oxidant injury in different types of cultured cells. Biofactors 2011, 37(6):439–446.

    Article  PubMed  CAS  Google Scholar 

  11. Stacchiotti A, Li Volti G, Lavazza A, Rezzani R, Rodella LF. Schisandrin B stimulates a cytoprotective response in rat liver exposed to mercuric chloride. Food Chem Toxicol 2009, 47:2834–2840.

    Article  PubMed  CAS  Google Scholar 

  12. Cheng HY, Hsieh MT, Wu CR, Tsai FH, Lu TC, Hsieh CC, et al. Schizandrin protects primary cultures of rat cortical cells from glutamate-induced excitotoxicity. J Pharmacol Sci 2008, 107:21–31.

    Article  PubMed  CAS  Google Scholar 

  13. Starkman MN, Gebarski SS, Berent S, Schteingart DE. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 1992, 32:756–765.

    Article  PubMed  CAS  Google Scholar 

  14. Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NP, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1998, 1:69–73.

    Article  PubMed  CAS  Google Scholar 

  15. Brunner R, Schaefer D, Hess K, Parzer P, Resch F, Schwab S. Effect of corticosteroids on short-term and long-term memory. Neurology 2005, 64:335–337.

    Article  PubMed  CAS  Google Scholar 

  16. Brown ES, Woolston DJ, Frol A, Bobadilla L, Khan DA, Hanczyc M, et al. Hippocampal volume, spectroscopy, cognition, and mood in patients receiving corticosteroid therapy. Biol Psychiatry 2004, 55:538–545.

    Article  PubMed  CAS  Google Scholar 

  17. Bermond B, Surachno S, Lok A, ten Berge IJ, Plasmans B, Kox C, et al. Memory functions in prednisone-treated kidney transplant patients. Clin Transplant 2005, 19:512–517.

    Article  PubMed  Google Scholar 

  18. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 2000, 57:925–935.

    Article  PubMed  CAS  Google Scholar 

  19. Joels M. Corticosteroid actions in the hippocampus. J Neuroendocrinol 2001, 13:657–669.

    Article  PubMed  CAS  Google Scholar 

  20. Yao YY, Liu DM, Xu DF, Li WP. Memory and learning impairment induced by dexamethasone in senescent but not young mice. Eur J Pharmacol 2007, 574:20–28.

    Article  PubMed  CAS  Google Scholar 

  21. Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 2002, 3:453–462.

    Article  PubMed  CAS  Google Scholar 

  22. Sapolsky RM. Chickens, eggs and hippocampal atrophy. Nat Neurosci 2002, 5:1111–1113.

    Article  PubMed  CAS  Google Scholar 

  23. Bremner JD. Stress and brain atrophy. CNS Neurol Disord Drug Targets 2006, 5:503–512.

    Article  PubMed  Google Scholar 

  24. McEwen BS. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 2008, 583:174–185.

    Article  PubMed  CAS  Google Scholar 

  25. Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 2000, 97:253–266.

    Article  PubMed  CAS  Google Scholar 

  26. Landfield PW, Blalock EM, Chen KC, Porter NM. A new glucocorticoid hypothesis of brain aging: implications for Alzheimer’s disease. Curr Alzheimer Res 2007, 4:205–212.

    Article  PubMed  CAS  Google Scholar 

  27. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 2009, 10:434–445.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Min Luo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Zhou, X., Zhou, XW. et al. Schizandrin prevents dexamethasone-induced cognitive deficits. Neurosci. Bull. 28, 532–540 (2012). https://doi.org/10.1007/s12264-012-1258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1258-y

Keywords

Navigation