Skip to main content
Log in

Effect of resuscitation after selective cerebral ultraprofound hypothermia on expressions of nerve growth factor and glial cell line-derived neurotrophic factor in the brain of monkey

选择性超深低温断血流复苏促进猴脑中神经生长因子和胶质细胞源性神经营养因子的表达

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion.

Methods

The monkeys were immediately removed brain after death in operation of group A (identical temperature perfusion group) and group B (ultraprofound hypothermia perfusion group). Immunohistochemical technique was used to determine frontal cellular expression of NGF and GDNF. Statistics were analyzed by ANOVA analyses with significance level at P < 0.05.

Results

The expressions of NGF and GDNF in the group B were significantly higher than those in the group A (P < 0.05).

Conclusion

NGF and GDNF increased significantly in the monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. It may be a protective mechanism for neuron survival and neural function recovery.

摘要

目的

观察常温缺血10 min后选择性超深低温断血流复苏后猴脑中神经生长因子(nerve growth factor, NGF)和胶质细胞源性神经营养因子(glial cell line-derived neurotrophicfactor, GDNF)表达的变化。

方法

等温组及超深低温组实验猴于灌注或复苏死亡后立即开颅取脑, 用NGF和GDNF抗体进行免疫组化染色;对额叶恒定视野内NGF和GDNF 的阳性细胞记数求阳性率, 并统计学分析。

结果

等温组2 只实验猴额叶NGF 和GDNF 有微量表达, 超深低温组4 只实验猴额叶NGF 和GDNF 表达明显上调, 与等温组比较差异均极显著(P < 0.01)。

结论

猴脑选择性超深低温断血流复苏实验可引起NGF和GDNF表达上调, 这可能是防止脑缺血的重要保护机制之一。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohta T, Sakaguchi I, Dong LW, Nagasawa S, Yasuda A. Selective cooling of brain using profound hemodilution in dogs. Neurosurgery 1992, 31: 1049–1055.

    Article  PubMed  CAS  Google Scholar 

  2. Price TJ, Louria MD, Candelario-Soto D, Dussor GO, Jeske NA, Patwardhan AM, et al. Treatment of trigeminal ganglion neurons in vitro with NGF, GDNF or BDNF: effects on neuronal survival, neurochemical properties and TRPV1-mediated neuropeptide secretion. BMC Neurosci 2005, 6: 4–18.

    Article  PubMed  CAS  Google Scholar 

  3. Petruska JC, Mendell LM. The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci Lett 2004, 361: 168–171.

    Article  PubMed  CAS  Google Scholar 

  4. Jiang JY, Xu W, Yang PF, Gao GY, Gao YG, Liang YM, et al. Marked protection by selective cerebral profound hypothermia after complete cerebral ischemia in primates. J Neurotrauma 2006, 23: 1847–1856.

    Article  PubMed  Google Scholar 

  5. Caba M, Bao J, Pau KY, Spies HG. Molecular activation of noradrenergic neurons in the rabbit brainstem after coitus. Brain Res Mol Brain Res 2000, 77: 222–231.

    Article  PubMed  CAS  Google Scholar 

  6. Whitlon DS, Szakaly R, Greiner MA. Cryoembedding and sectioning of cochleas for immunocytochemistry and in situ hybridization. Brain Res Brain Res Protoc 2001, 6: 159–166.

    Article  PubMed  CAS  Google Scholar 

  7. Yang XD, Liu Z, Liu HX, Wang LH, Ma CH, Li ZZ. Regulatory effect of nerve growth factor on release of substance P in cultured dorsal root ganglion neurons of rat. Neurosci Bull 2007, 23: 215–220.

    Article  PubMed  CAS  Google Scholar 

  8. Su YR, Wang J, Wu JJ, Chen Y, Jiang YP. Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin. Neurosci Bull 2007, 23: 67–74.

    Article  PubMed  CAS  Google Scholar 

  9. Chen KS, Nishimura MC, Armanini MP, Crowley C, Spencer SD, Phillips HS. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci 1997, 17: 7288–7296.

    PubMed  CAS  Google Scholar 

  10. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995, 376: 37–43.

    Article  PubMed  CAS  Google Scholar 

  11. Eldadah BA, Faden AI. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 2000, 17: 811–829.

    Article  PubMed  CAS  Google Scholar 

  12. Gurney ME, Tomasselli AG, Heinrikson RL. Neurobiology. Stay the executioner’s hand. Science 2000, 288: 283–284.

    Article  PubMed  CAS  Google Scholar 

  13. Armstrong RC, Aja TJ, Hoang KD, Gaur S, Bai X, Alnemri ES, et al. Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis. J Neurosci 1997, 17: 553–562.

    PubMed  CAS  Google Scholar 

  14. Yanamoto H, Mizuta I, Nagata I, Xue J, Zhang Z, Kikuchi H. Infarct tolerance accompanied enhanced BDNF-like immunoreactivity in neuronal nuclei. Brain Res 2000, 877: 331–344.

    Article  PubMed  CAS  Google Scholar 

  15. Ramer MS, Priestley JV, McMahon SB. Functional regeneration of seneory axons into the adult spinal cord. Nature 2000, 403: 312–316.

    Article  PubMed  CAS  Google Scholar 

  16. Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 1999, 19: 7537–7547.

    PubMed  CAS  Google Scholar 

  17. Igari T, Hoshino S, Iwaya F, Ando S. Cerebral blood flow and oxygen metabolism during cardiopulmonary bypass with moderate hypothermic selective cerebral perfusion. Cardiovasc Surg 1999, 7: 106–111.

    Article  PubMed  CAS  Google Scholar 

  18. Ding Y, Li J, Luan X, Ding YH, Lai Q, Rafols JA, et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 2004, 124: 583–591.

    Article  PubMed  CAS  Google Scholar 

  19. Truettner J, Busto R, Zhao W, Ginsberg MD, Pérez-Pinzón MA. Effect of ischemic precond-itioning on the expression of putative neuroprotective genes in the rat brain. Brain Res Mol Brain Res 2002, 103: 106–115.

    Article  PubMed  CAS  Google Scholar 

  20. Li QY, Cheng GY, Pu PY, Zhang RZ, Lian H, Jiang DH. Changes of GDNF mRNA expression in rat brain following cerebral ischemia reperfusion. Chin J Neurosci 1999, 15: 243–246.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, XC., Xu, W. & Jiang, JY. Effect of resuscitation after selective cerebral ultraprofound hypothermia on expressions of nerve growth factor and glial cell line-derived neurotrophic factor in the brain of monkey. Neurosci. Bull. 24, 150–154 (2008). https://doi.org/10.1007/s12264-008-1702-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-008-1702-1

Keywords

CLC number

关键词

Navigation