Skip to main content
Log in

Wickerhamomyces ciferrii Auxotroph and Expression Vector for Improved Production of Tetraacetyl Phytosphingosine

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Tetraacetyl phytosphingosine (TAPS) is a precursor that has antibacterial and wound-healing properties and is used in the synthesis of ceramides. Wickerhamomyces ciferrii is a non-conventional yeast that has the ability to produce and secrete TAPS extracellularly. However, the genetic engineering tools available for this yeast species are limited. In this study, an auxotrophic strain Y94 of W. ciferrii was developed through random mutation and screening under 1.5 g/L 5-fluoroorotic acid. Additionally, an expression vector was constructed which harbors an uracil selection marker and CEN/ARS origin of replication. Using requisite mutations and expression vectors, we successfully constructed an engineered strain that overexpressed LCB1, LCB2, and SYR2, with the deletion of LCB4, resulting in the highest reported TAPS titer to date (20 g/L) through high cell density fermentation. This study demonstrates the potential of W. ciferrii for TAPS production and highlights the significance of an efficient genetic engineering toolbox in enhancing yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schorsch, C., T. Köhler, H. Andrea, and E. Boles (2012) High-level production of tetraacetyl phytosphingosine (TAPS) by combined genetic engineering of sphingoid base biosynthesis and L-serine availability in the non-conventional yeast Pichia ciferrii. Metab. Eng. 14: 172–184.

    Article  CAS  PubMed  Google Scholar 

  2. Börgel, D., M. van den Berg, T. Hüller, H. Andrea, G. Liebisch, E. Boles, C. Schorsch, R. van der Pol, A. Arink, I. Boogers, R. van der Hoeven, K. Korevaar, M. Farwick, T. Köhler, and S. Schaffer (2012) Metabolic engineering of the non-conventional yeast Pichia ciferrii for production of rare sphingoid bases. Metab. Eng. 14: 412–426.

    Article  PubMed  Google Scholar 

  3. Cowart, L. A. and Y. A. Hannun (2003) 12 Baker’s Yeast: a rising foundation for eukaryotic sphingolipid-mediated cell signaling. pp. 383–401. In: G. Daum (ed.). Lipid Metabolism and Membrane Biogenesis. Springer.

  4. Cowart, L. A. and L. M. Obeid (2007) Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim. Biophys. Acta 1771: 421–431.

    Article  CAS  PubMed  Google Scholar 

  5. Dickson, R. C., C. Sumanasekera, and R. L. Lester (2006) Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog. Lipid Res. 45: 447–465.

    Article  CAS  PubMed  Google Scholar 

  6. Draelos, Z. D. (2008) The effect of ceramide-containing skin care products on eczema resolution duration. Cutis 81: 87–91.

    PubMed  Google Scholar 

  7. Jang, E. J., Y. Shin, H. J. Park, D. Kim, C. Jung, J.-Y. Hong, S. Kim, and S. K. Lee (2017) Anti-melanogenic activity of phytosphingosine via the modulation of the microphthalmia-associated transcription factor signaling pathway. J. Dermatol. Sci. 87: 19–28.

    Article  CAS  PubMed  Google Scholar 

  8. Jeon, J., M. Shin, J. W. Yoo, J. S. Oh, J. G. Bae, S. H. Jung, and Y. G. Kim (2007) Highly anti-selective dihydroxylation of 1,2-dialkyl substituted (Z)-allylic amines: stereoselective synthesis of a D-ribo-phytosphingosine derivative. Tetrahedron Lett. 48: 1105–1108.

    Article  CAS  Google Scholar 

  9. Ceramide Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023–2028. https://www.imarcgroup.com/ceramide-market

  10. Choi, H. K., Y. H. Cho, E. O. Lee, J. W. Kim, and C. S. Park (2017) Phytosphingosine enhances moisture level in human skin barrier through stimulation of the filaggrin biosynthesis and degradation leading to NMF formation. Arch. Dermatol. Res. 309: 795–803.

    Article  CAS  PubMed  Google Scholar 

  11. Park, Y., K. S. Kim, M. Chung, J. H. Sung, and B. Kim (2016) Fabrication and characterization of dissolving microneedle arrays for improving skin permeability of cosmetic ingredients. J. Ind. Eng. Chem. 39: 121–126.

    Article  CAS  Google Scholar 

  12. Školová, B., A. Kováčik, O. Tesař, L. Opálka, and K. Vávrová (2017) Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics. Biochim. Biophys. Acta 1859: 824–834.

    Article  Google Scholar 

  13. Kwon, Y. B., C. D. Kim, B. J. Kim, M.-Y. Kim, C. S. Park, T.-J. Yoon, Y.-J. Seo, K.-B. Suhr, J.-K. Park, and J.-H. Lee (2007) Anti-angiogenic effect of tetraacetyl-phytosphingosine. Exp. Dermatol. 16: 311–317.

    Article  CAS  PubMed  Google Scholar 

  14. Barenholz, Y. and S. Gatt (1969) Acetylation of sphingosine bases and long-chain amines by cell-free preparations of Hansenula ciferri. Biochem. Biophys. Res. Commun. 35: 676–680.

    Article  CAS  PubMed  Google Scholar 

  15. Wickerham, L. J. and F. H. Stodola (1960) Formation of extracellular sphingolipides by microorganisms. I. Tetraacetylphyto-sphingosine from Hansenula ciferri. J. Bacteriol. 80: 484–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schneider, J., H. Andrea, J. Blom, S. Jaenicke, C. Rückert, C. Schorsch, R. Szczepanowski, M. Farwick, A. Goesmann, A. Pühler, S. Schaffer, A. Tauch, T. Köhler, and K. Brinkrolf (2012) Draft genome sequence of Wickerhamomyces ciferrii NRRL Y-1031 F-60-10. Eukaryot. Cell 11: 1582–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi, J. Y., H. J. Hwang, W. Y. Cho, J.-I. Choi, and P. C. Lee (2021) Differences in the fatty acid profile, morphology, and tetraacetylphytosphingosine-forming capability between wild-type and mutant Wickerhamomyces ciferrii. Front. Bioeng. Biotechnol. 9: 662979.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ter Veld, F., D. Wolff, C. Schorsch, T. Köhler, E. Boles, and A. Poetsch (2013) Production of tetraacetyl phytosphingosine (TAPS) in Wickerhamomyces ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p. Appl. Microbiol. Biotechnol. 97: 8537–8546.

    Article  CAS  PubMed  Google Scholar 

  19. Eun, S. W. and P. C. Lee (2023) Investigation of the effects of culture conditions on cell growth and tetraacetylphytosphingosine production by mutant Wickerhamomyces ciferrii. Process Biochem. 130: 203–210.

    Article  CAS  Google Scholar 

  20. Park, S.-B., Q.-G. Tran, A. J. Ryu, J.-H. Yun, K. K. Kwon, Y. J. Lee, and H.-S. Kim (2022) Fluorescence-activated cell sorting-mediated directed evolution of Wickerhamomyces ciferrii for enhanced production of tetraacetyl phytosphingosine. Korean J. Chem. Eng. 39: 1004–1010.

    Article  CAS  Google Scholar 

  21. Han, C., M. Jang, M. J. Kim, M.-H. Han, K.-R. Lee, J.-S. Hahn, and J. Ahn (2021) Engineering Yarrowia lipolytica for de novo production of tetraacetyl phytosphingosine. J. Appl. Microbiol. 130: 1981–1992.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, L., J. Xu, T. Li, L. Wang, T. Deng, and X. Yu (2014) Effects of additional Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 under different culture conditions. Ann. Microbiol. 64: 1247–1256.

    Article  CAS  Google Scholar 

  23. Lee, S.-M. and J.-H. Lee (2012) Ethanol fermentation for main sugar components of brown-algae using various yeasts. J. Ind. Eng. Chem. 18: 16–18.

    Article  CAS  Google Scholar 

  24. Ko, J. K., Y. Um, H. M. Woo, K. H. Kim, and S.-M. Lee (2016) Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresour. Technol. 209: 290–296.

    Article  CAS  PubMed  Google Scholar 

  25. Hoang Nguyen Tran, P., J. K. Ko, G. Gong, Y. Um, and S.-M. Lee (2020) Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnol. Biofuels 13: 12.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kwak, S. and Y.-S. Jin (2017) Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb. Cell Fact. 16: 82.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bae, J.-H., J.-H. Sohn, C.-S. Park, J.-S. Rhee, and E.-S. Choi (2003) Integrative transformation system for the metabolic engineering of the sphingoid base-producing yeast Pichia ciferrii. Appl. Environ. Microbiol. 69: 812–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marx, C. J. and M. E. Lidstrom (2002) Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques 33: 1062–1067.

    Article  CAS  PubMed  Google Scholar 

  29. Schorsch, C., T. Köhler, and E. Boles (2009) Knockout of the DNA ligase IV homolog gene in the sphingoid base producing yeast Pichia ciferrii significantly increases gene targeting efficiency. Curr. Genet. 55: 381–389.

    Article  CAS  PubMed  Google Scholar 

  30. Hastings, P. J., C. McGill, B. Shafer, and J. N. Strathern (1993) Ends-in vs. ends-out recombination in yeast. Genetics 135: 973–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. García-Ríos, E., M. Lairón-Peris, S. Muñiz-Calvo, J. M. Heras, A. Ortiz-Julien, P. Poirot, N. Rozès, A. Querol, and J. M. Guillamón (2021) Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae strains for cocoa pulp fermentations. Int. J. Food Microbiol. 342: 109077.

    Article  PubMed  Google Scholar 

  32. Luo, Z., K. Yu, S. Xie, M. Monti, D. Schindler, Y. Fang, S. Zhao, Z. Liang, S. Jiang, M. Luan, C. Xiao, Y. Cai, and J. Dai (2021) Compacting a synthetic yeast chromosome arm. Genome Biol. 22: 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hashimoto, S., M. Ogura, K. Aritomi, H. Hoshida, Y. Nishizawa, and R. Akada (2005) Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Appl. Environ. Microbiol. 71: 312–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laughery, M. F., T. Hunter, A. Brown, J. Hoopes, T. Ostbye, T. Shumaker, and J. J. Wyrick (2015) New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast 32: 711–720.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, M., X. Zhang, and T. Tan (2016) The effect of amino acids on lipid production and nutrient removal by Rhodotorula glutinis cultivation in starch wastewater. Bioresour. Technol. 218: 712–717.

    Article  CAS  PubMed  Google Scholar 

  36. Cai, Y., H. Chen, X. Tang, J. Zhao, H. Zhang, Y. Q. Chen, and W. Chen (2022) The relationship between amino acid and lipid metabolism in oleaginous eukaryotic microorganism. Appl. Microbiol. Biotechnol. 106: 3405–3417.

    Article  CAS  PubMed  Google Scholar 

  37. Sarma, S. J., R. K. Das, S. K. Brar, Y. L. Bihan, G. Buelna, M. Verma, and C. R. Soccol (2014) Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste. Energy 78: 16–22.

    Article  CAS  Google Scholar 

  38. Verduyn, C., E. Postma, W. A. Scheffers, and J. P. V Dijken (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501–517.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea University funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kyu Oh.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, S.W., Kim, M., Park, BS. et al. Wickerhamomyces ciferrii Auxotroph and Expression Vector for Improved Production of Tetraacetyl Phytosphingosine. Biotechnol Bioproc E 28, 804–812 (2023). https://doi.org/10.1007/s12257-023-0128-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0128-y

Keywords

Navigation