Skip to main content
Log in

Enhanced Production of 1-Deoxynojirimycin in Bacillus subtilis subsp. inaquosorum by Random Mutagenesis and Culture Optimization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

This article has been updated

Abstract

1-Deoxynojirimycin (DNJ) is a potent inhibitor of α-glucosidase having antidiabetic and antiviral activities. In the present study, DNJ production by Bacillus subtilis subsp. inaquosorum KCTC 13429 (B. subtilis IWT) was confirmed and a mutant B. subtilis I.247 strain showing 52% increased DNJ production than wild-type strain after cultivation in 5% defatted soybean meal (DFS) for five days was isolated by UV random mutagenesis. The optimum culture conditions to maximize DNJ production by B. subtilis I.247 was predicted using response surface methodology to cultivate in medium containing 3.4% sorbitol and 2.4% yeast extract as carbon and nitrogen sources, respectively, at a temperature of 32°C. Under these conditions B. subtilis I.247 was able to produce 359 mg/L after five days of cultivation. Furthermore, when the B. subtilis I.247 transformant harboring a vector expressing a gabT1-yktc1-gutB1 DNJ biosynthetic gene cluster was cultured under the optimized condition, DNJ production was increased to 773 mg/L, representing a level 6.2-fold higher than that of the wild-type strain cultured in 5% DFS for five days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 13 May 2021

    The correct data in abstract is correct given in the PDF file, but tagged incorrectly in xml, 50% should be 52%.

References

  1. Gao, K., C. Zheng, T. Wang, H. Zhao, J. Wang, Z. Wang, X. Zhai, Z. Jia, J. Chen, Y. Zhou, and W. Wang (2016) 1-Deoxynojirimycin: occurrence, extraction, chemistry, oral pharmacokinetics, biological activities and in silico target fishing. Molecules. 21: 1600.

    Article  PubMed Central  Google Scholar 

  2. Zhang, W., W. Mu, H. Wu, and Z. Liang (2019) An overview of the biological production of 1-deoxynojirimycin: current status and future perspective. Appl. Microbiol. Biotechnol. 103: 9335–9344.

    Article  CAS  PubMed  Google Scholar 

  3. Watson, A. A., G. W. Fleet, N. Asano, R. J. Molyneux, and R. J. Nash (2001) Polyhydroxylated alkaloids — natural occurrence and therapeutic applications. Phytochemistry. 56: 265–295.

    Article  CAS  PubMed  Google Scholar 

  4. Dwek, R. A., T. D. Butters, F. M. Platt, and N. Zitzmann (2002) Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug Discov. 1: 65–75.

    Article  CAS  PubMed  Google Scholar 

  5. Kiefel, M. J. (2010) Glycomimetics as inhibitors in anti-infection therapy. pp. 915–932. In: O. Holst, P. J. Brennan, and M. von Itzstein (eds.). Microbial Glycobiology. Elsevier, San Diego, CA, USA.

    Chapter  Google Scholar 

  6. Li, Y., S. Zhong, J. Yu, Y. Sun, J. Zhu, D. Ji, and C. Wu (2019) The mulberry-derived 1-deoxynojirimycin (DNJ) inhibits high-fat diet (HFD)-induced hypercholesteremia and modulates the gut microbiota in a gender-specific manner. J. Funct. Foods. 52: 63–72.

    Article  CAS  Google Scholar 

  7. Zheng, J., L. Zhu, B. Hu, X. Zou, H. Hu, Z. Zhang, N. Jiang, J. Ma, H. Yang, and H. Liu (2019) 1-Deoxynojirimycin improves high fat diet-induced nonalcoholic steatohepatitis by restoring gut dysbiosis. J. Nutr. Biochem. 71: 16–26.

    Article  CAS  PubMed  Google Scholar 

  8. Afarinkia, K. and A. Bahar (2005) Recent advances in the chemistry of azapyranose sugars. Tetrahedron Asymmetry. 16: 1239–1287.

    Article  CAS  Google Scholar 

  9. Hardick, D. J., D. W. Hutchinson, S. J. Trew, and E. M. Wellington (1992) Glucose is a precursor of 1-deoxynojirimycin and 1-deoxymannonojirimycin in Streptomyces subrutilus. Tetrahedron. 48: 6285–6296.

    Article  CAS  Google Scholar 

  10. Hardick, D. J. and D. W. Hutchinson (1993) The biosynthesis of 1-deoxynojirimycin in Bacillus subtilis var niger. Tetrahedron. 49: 6707–6716.

    Article  CAS  Google Scholar 

  11. Clark, L. F., J. V. Johnson, and N. A. Horenstein (2011) Identification of a gene cluster that initiates azasugar biosynthesis in Bacillus amyloliquefaciens. Chembiochem. 12: 2147–2150.

    Article  CAS  PubMed  Google Scholar 

  12. Kang, K. D., Y. S. Cho, J. H. Song, Y. S. Park, J. Y. Lee, K. Y. Hwang, S. K. Rhee, J. H. Chung, O. Kwon, and S. I. Seong (2011) Identification of the genes involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85. J. Microbiol. 49: 431–440.

    Article  CAS  PubMed  Google Scholar 

  13. Stein, D. C., L. K. Kopec, R. E. Yasbin, and F. E. Young (1984) Characterization of Bacillus subtilis DSM704 and its production of 1-deoxynojirimycin. Appl. Environ. Microbiol. 48: 280–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schedel, M. (2001) Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, key reaction in the industrial 1-deoxynojirimycin synthesis. pp. 295–311. In: H. J. Rehm and G. Reed (eds.). Biotechnology Set. Wiley-VCH, Weinheim, Germany.

    Chapter  Google Scholar 

  15. Wei, Z. J., L. C. Zhou, H. Chen, and G. H. Chen (2011) Optimization of the fermentation conditions for 1-deoxynojirimycin production by Streptomyces lawendulae applying the response surface methodology. Int. J. Food Eng. 7: 16.

    Article  Google Scholar 

  16. Ezure, Y., S. Maruo, K. Miyazaki, and M. Kawamata (1985) Moranoline (1-deoxynojirimycin) fermentation and its improvement. Agric. Biol. Chem. 49: 1119–1125.

    CAS  Google Scholar 

  17. Zhu, Y. P., X. T. Li, C. Teng, and B. G. Sun (2013) Enhanced production of α-glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2 using response surface methodology. Food Bioprod. Process. 91: 264–270.

    Article  CAS  Google Scholar 

  18. Cho, Y. S., Y. S. Park, J. Y. Lee, K. D. Kang, K. Y. Hwang, and S. I. Seong (2008) Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 37: 1401–1407.

    Article  CAS  Google Scholar 

  19. Lee, H., H. H. Shin, H. R. Kim, Y. D. Nam, D. H. Seo, and M. J. Seo (2018) Culture optimization strategy for 1-deoxynojirimycin-producing Bacillus methylotrophicus K26 isolated from Korean fermented soybean paste, Doenjang. Biotechnol. Bioprocess Eng. 23: 424–431.

    Article  CAS  Google Scholar 

  20. Wu, H., Y. Guo, L. Chen, G. Chen, and Z. Liang (2019) A novel strategy to regulate 1-deoxynojirimycin production based on its biosynthetic pathway in Streptomyces lavendulae. Front. Microbiol. 10: 1968.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu, Y., J. Arciola, and N. Horenstein (2014) Medium-chain dehydrogenases with new specificity: amino mannitol dehydrogenases on the azasugar biosynthetic pathway. Protein Pept. Lett. 21: 10–14.

    Article  PubMed  Google Scholar 

  22. Arciola, J. M. and N. A. Horenstein (2018) Characterization of the PLP-dependent transaminase initiating azasugar biosynthesis. Biochem. J. 475: 2241–2256.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, P., S. Mu, H. Li, Y. Li, C. Feng, J. M. Jin, and S. Y. Tang (2015) Design and application of a novel high-throughput screening technique for 1-deoxynojirimycin. Sci Rep. 5: 8563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rayamajhi, V., D. Dhakal, A. K. Chaudhary, and J. K. Sohng (2018) Improved production of 1-deoxynojirymicin in Escherichia coli through metabolic engineering. World J. Microbiol. Biotechnol. 34: 77.

    Article  PubMed  Google Scholar 

  25. Nijland, R., J. G. Burgess, J. Errington, and J. W. Veening (2010) Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence. PLoS One. 5: e9724.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gu, Y., X. Xu, Y. Wu, T. Niu, Y. Liu, J. Li, G. Du, and L. Liu (2018) Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab. Eng. 50: 109–121.

    Article  CAS  PubMed  Google Scholar 

  27. Jeong, D. E., Y. So, S. Y. Park, S. H. Park, and S. K. Choi (2018) Random knock-in expression system for high yield production of heterologous protein in Bacillus subtilis. J. Biotechnol. 266: 50–58.

    Article  CAS  PubMed  Google Scholar 

  28. Lim, H. and S. K. Choi (2019) Programmed gRNA removal system for CRISPR-Cas9-mediated multi-round genome editing in Bacillus subtilis. Front. Microbiol. 10: 1140.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sambrook, J. and D. W. Russell (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., pp. 116–119. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  30. Transformation of Bacillus subtilis (simple). http://2014.igem.org/wiki/images/c/c2/LMU_Munich14_Transformation_of_Bacillus_subtilis.pdf.

  31. Le Breton, Y., N. P. Mohapatra, and W. G. Haldenwang (2006) In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl. Environ. Microbiol. 72: 327–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Altenbuchner, J. (2016) Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl. Environ. Microbiol. 82: 5421–5427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen, H. D., T. T. P. Phan, and W. Schumann (2007) Expression vectors for the rapid purification of recombinant proteins in Bacillus subtilis. Curr. Microbiol. 55: 89–93.

    Article  CAS  PubMed  Google Scholar 

  34. Gopinath, K. P., S. Murugesan, J. Abraham, and K. Muthukumar (2009) Bacillus sp. mutant for improved biodegradation of Congo red: random mutagenesis approach. Bioresour. Technol. 100: 6295–6300.

    Article  CAS  PubMed  Google Scholar 

  35. Kotlar, C. E., M. V. Agüero, and S. I. Roura (2010) Methods: Simultaneous optimization of biomass and protease biosynthesis by a local isolated Pseudomonas sp. — response surface optimization using Box-Behnken design. Ind. Biotechnol. 6: 364–374.

    Article  CAS  Google Scholar 

  36. Rairakhwada, D., J. W. Seo, M. Y. Seo, O. Kwon, S. K. Rhee, and C. H. Kim (2010) Gene cloning, characterization, and heterologous expression of levansucrase from Bacillus amyloliquefaciens. J. Ind. Microbiol. Biotechnol. 37: 195–204.

    Article  CAS  PubMed  Google Scholar 

  37. Kim, J. W., S. U. Kim, H. S. Lee, I. Kim, M. Y. Ahn, and K. S. Ryu (2003) Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. J. Chromatogr. A. 1002: 93–99.

    Article  CAS  PubMed  Google Scholar 

  38. Nuengchamnong, N., K. Ingkaninan, W. Kaewruang, S. Wongareonwanakij, and B. Hongthongdaeng (2007) Quantitative determination of 1-deoxynojirimycin in mulberry leaves using liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 44: 853–858.

    Article  CAS  PubMed  Google Scholar 

  39. Kimura, T., K. Nakagawa, Y. Saito, K. Yamagishi, M. Suzuki, K. Yamaki, H. Shinmoto, and T. Miyazawa (2004) Determination of 1-deoxynojirimycin in mulberry leaves using hydrophilic interaction chromatography with evaporative light scattering detection. J. Agric. Food Chem. 52: 1415–1418.

    Article  CAS  PubMed  Google Scholar 

  40. Rooney, A. P., N. P. Price, C. Ehrhardt, J. L. Swezey, and J. D. Bannan (2009) Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int. J. Syst. Evol. Microbiol. 59: 2429–2436.

    Article  CAS  PubMed  Google Scholar 

  41. Yi, H., J. Chun, and C. J. Cha (2014) Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis. Syst. Appl. Microbiol. 37: 95–99.

    Article  CAS  PubMed  Google Scholar 

  42. Regmi S., H. Y. Yoo, Y. H. Choi, Y. S. Choi, J. C. Yoo, and S. W. Kim (2017) Prospects for bio-industrial application of an extremely alkaline mannanase from Bacillus subtilis subsp. inaquosorum CSB31. Biotechnol. J. 12: 1700113.

    Article  Google Scholar 

  43. Knight, C. A., M. J. Bowman, L. Frederick, A. Day, C. Lee, and C. A. Dunlap (2018) The first report of antifungal lipopeptide production by a Bacillus subtilis subsp. inaquosorum strain. Microbiol. Res. 216: 40–46.

    Article  CAS  PubMed  Google Scholar 

  44. Bapiraju, K. V. V. S. N., P. Sujatha, P. Ellaiah, and T. Ramana (2004) Mutation induced enhanced biosynthesis of lipase. Afr. J. Biotechnol. 3: 618–621.

    CAS  Google Scholar 

  45. Onose, S., R. Ikeda, K. Nakagawa, T. Kimura, K. Yamagishi, O. Higuchi, and T. Miyazawa (2013) Production of the α-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species. Food Chem. 138: 516–523.

    Article  CAS  PubMed  Google Scholar 

  46. Seo, M. J., Y. D. Nam, S. Y. Lee, S. L. Park, S. H. Yi, and S. I. Lim (2013) Isolation of the putative biosynthetic gene cluster of 1-deoxynojirimycin by Bacillus amyloliquefaciens 140N, its production and application to the fermentation of soybean paste. Biosci. Biotechnol. Biochem. 77: 398–401.

    Article  CAS  PubMed  Google Scholar 

  47. Paek, N. S., D. J. Kang, Y. J. Choi, J. J. Lee, T. H. Kim, and K. W. Kim (1997) Production of 1-deoxynojirimycin by Streptomyces sp. SID9135. J. Microbiol. Biotechnol. 7: 262–266.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Intelligent Synthetic Biology Global Frontier Program of the National Research Foundation and Korea Research Institute of Bioscience and Biotechnology (KRIBB) in Republic of Korea. We are very grateful to Dr. Woo-Jung Kim in the Gyeonggido Business & Science Accelerator Bio Center (Gyeonggido, Korea) for help with UHPLC-MS/MS analysis. We also appreciate Dr. Sang Yoon Kim for help with vector construction and Dr. Seung Wook Kim for his valuable comments.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohsuk Kwon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, K.N., Kim, Y., Maibunkaew, S. et al. Enhanced Production of 1-Deoxynojirimycin in Bacillus subtilis subsp. inaquosorum by Random Mutagenesis and Culture Optimization. Biotechnol Bioproc E 26, 265–276 (2021). https://doi.org/10.1007/s12257-020-0231-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0231-2

Keywords

Navigation