Skip to main content
Log in

Stabilization of Proteins by Covalent Cyclization

  • Review Paper
  • Protein Engineering and Enzyme Technology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Stabilizing proteins against the thermal stress or proteolytic attacks is an important goal in many protein engineering studies. As the simplest approach to the rational engineering of proteins, cyclizing proteins covalently has attracted a great deal of attention. The idea of stabilizing the folded state of a protein by connecting its loose ends came from the polymer theory and was evidenced by many super-stable cyclic peptides/proteins present in nature. Laboratory methodologies utilizing various tools such as inteins, transpeptidases, transglutaminases and split cellular anchoring proteins have been developed, engineered, and successfully adopted to protein cyclization reactions. Depending on the method used, N- and C-termini could be joined together to yield backbone cyclized proteins, or side chains located near the ends might be crosslinked to yield side chain cyclized ones. As each of the methods has its own pros and cons in its reaction scheme, the outcomes such as an increase in melting temperature of a given protein are different when different methods are applied. In this review, we highlight the stabilizing effects exerted by protein cyclization focusing on not a specific cyclizing method but product proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rigoldi, F., S. Donini, A. Redaelli, E. Parisini, and A. Gautieri (2018) Review: Engineering of thermostable enzymes for industrial applications. APL Bioeng. 2: 011501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Seo, J. H., W. K. Min, S. G. Lee, H. Yun, and B. G. Kim (2018) To the final goal: Can we predict and suggest mutations for protein to develop desired phenotype? Biotechnol. Bioprocess Eng. 23: 134–143.

    Article  CAS  Google Scholar 

  3. Kim, J. Y., H. W. Yoo, P. G. Lee, S. G. Lee, J. H. Seo, and B. G. Kim (2019) In vivo protein evolution, next generation protein engineering strategy: from random approach to target-specific approach. Biotechnol. Bioprocess Eng. 24: 85–94.

    Article  CAS  Google Scholar 

  4. Saether, O., D. J. Craik, I. D. Campbell, K. Sletten, J. Juul, and D. G. Norman (1995) Elucidation of the primary and 3-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry. 34: 4147–4158.

    Article  CAS  PubMed  Google Scholar 

  5. Gran, L., F. Sandberg, and K. Sletten (2000) Oldenlandia affinis (R&S) DC — A plant containing uteroactive peptides used in African traditional medicine. J. Ethnopharmacol. 70: 197–203.

    Article  CAS  PubMed  Google Scholar 

  6. Craik, D. J., M. H. Lee, F. B. H. Rehm, B. Tombling, B. Doffek, and H. Peacock (2018) Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds. Bioorg. Med. Chem. 26: 2727–2737.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, C. K. and D. J. Craik (2018) Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nat. Chem. Biol. 14: 417–427.

    Article  CAS  PubMed  Google Scholar 

  8. Samyn, B., M. Martinez-Bueno, B. Devreese, M. Maqueda, A. Galvez, E. Valdivia, J. Coyette, and J. Van Beeumen (1994) The cyclic structure of the enterococcal peptide antibiotic AS-48. FEBS Lett. 352: 87–90.

    Article  CAS  PubMed  Google Scholar 

  9. Flory, P. J. (1956) Theory of elastic mechanisms in fibrous proteins. J. Am. Chem. Soc. 78: 5222–5235.

    Article  CAS  Google Scholar 

  10. Krishna, M. M. and S. W. Englander (2005) The N-terminal to C-terminal motif in protein folding and function. Proc. Natl. Acad. Sci. USA. 102: 1053–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trabi, M. and D. J. Craik (2002) Circular proteins — no end in sight. Trends Biochem. Sci. 27: 132–138.

    Article  CAS  PubMed  Google Scholar 

  12. Paulus, H. (1998) The chemical basis of protein splicing. Chem. Soc. Rev. 27: 375–386.

    Article  CAS  Google Scholar 

  13. Wood, D. W. and J. A. Camarero (2014) Intein applications: From protein purification and labeling to metabolic control methods. J. Biol. Chem. 289: 14512–14519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tavassoli, A. and S. J. Benkovic (2007) Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nat. Protoc. 2: 1126–1133.

    Article  CAS  PubMed  Google Scholar 

  15. Brenzel, S., T. Kurpiers, and H. D. Mootz (2006) Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein. Biochemistry. 45: 1571–1578.

    Article  CAS  PubMed  Google Scholar 

  16. Appleby-Tagoe, J. H., I. V. Thiel, Y. Wang, Y. Wang, H. D. Mootz, and X. Q. Liu (2011) Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J. Biol. Chem. 286: 34440–34447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aranko, A. S., J. S. Oeemig, D. Zhou, T. Kajander, A. Wlodawer, and H. Iwaï (2014) Structure-based engineering and comparison of novel split inteins for protein ligation. Mol. Biosyst. 10: 1023–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stevens, A. J., Z. Z. Brown, N. H. Shah, G. Sekar, D. Cowburn, and T. W. Muir (2016) Design of a split intein with exceptional protein splicing activity. J. Am. Chem. Soc. 138: 2162–2165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Siezen, R. J. and J. A. Leunissen (1997) Subtilases: The superfamily of subtilisin-like serine proteases. Protein Sci. 6: 501–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abrahmsen, L., J. Tom, J. Burnier, K. A. Butcher, A. Kossiakoff, and J. A. Wells (1991) Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry. 30: 4151–4159.

    Article  CAS  PubMed  Google Scholar 

  21. Chang, T. K., D. Y. Jackson, J. P. Burnier, and J. A. Wells (1994) Subtiligase: a tool for semisynthesis of proteins. Proc. Natl. Acad. Sci. U.S.A. 91: 12544–12548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson, D. Y., J. Burnier, C. Quan, M. Stanley, J. Tom, and J. A. Wells (1994) A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science. 266: 243–247.

    Article  CAS  PubMed  Google Scholar 

  23. Henager, S. H., N. Chu, Z. Chen, D. Bolduc, D. R. Dempsey, Y. Hwang, J. Wells, and P. A. Cole (2016) Enzyme-catalyzed expressed protein ligation. Nat. Methods. 13: 925–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muir, T. W., D. Sondhi, and P. A. Cole (1998) Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA. 95: 6705–6710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Proft, T. (2010) Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation. Biotechnol. Lett. 32: 1–10.

    Article  CAS  PubMed  Google Scholar 

  26. Parthasarathy, R., S. Subramanian, and E. T. Boder (2007) Sortase A as a novel molecular “stapler” for sequence-specific protein conjugation. Bioconjug Chem. 18: 469–476.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen, G. K. T., S. Wang, Y. Qiu, X. Hemu, Y. Lian, and J. P. Tam (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat. Chem. Biol. 10: 732–738.

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen, G. K. T., A. Kam, S. Loo, A. E. Jansson, L. X. Pan, and J. P. Tam (2015) Butelase 1: A versatile ligase for peptide and protein macrocyclization. J. Am. Chem. Soc. 137: 15398–15401.

    Article  CAS  PubMed  Google Scholar 

  29. Harris, K. S., T. Durek, Q. Kaas, A. G. Poth, E. K. Gilding, B. F. Conlan, I. Saska, N. L. Daly, N. L. van der Weerden, D. J. Craik, and M. A. Anderson (2015) Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat. Commun. 6: 10199.

    Article  CAS  PubMed  Google Scholar 

  30. Mylne, J. S., M. L. Colgrave, N. L. Daly, A. H. Chanson, A. G. Elliott, E. J. McCallum, A. Jones, and D. J. Craik (2011) Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nat. Chem. Biol. 7: 257–259.

    Article  CAS  PubMed  Google Scholar 

  31. James, A. M., J. Haywood, and J. S. Mylne (2018) Macrocyclization by asparaginyl endopeptidases. New Phytol. 218: 923–928.

    Article  CAS  PubMed  Google Scholar 

  32. Hemu, X. Y., A. El Sahili, S. D. Hu, K. H. Wong, Y. Chen, Y. H. Wong, X. H. Zhang, A. Serra, B. C. Goh, D. A. Darwis, M. W. Chen, S. K. Sze, C. F. Liu, J. Lescar, and J. P. Tam (2019) Structural determinants for peptide-bond formation by asparaginyl ligases. Proc. Natl. Acad. Sci. USA. 116: 11737–11746.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. James, A. M., J. Haywood, J. Leroux, K. Ignasiak, A. G. Elliott, J. W. Schmidberger, M. F. Fisher, S. G. Nonis, R. Fenske, C. S. Bond, and J. S. Mylne (2019) The macrocyclizing protease butelase 1 remains autocatalytic and reveals the structural basis for ligase activity. Plant J. 98: 988–999.

    CAS  PubMed  Google Scholar 

  34. Volkin, D. B. and A. M. Klibanov (1987) Thermal destruction processes in proteins involving cystine residues. J. Biol. Chem. 262: 2945–2950.

    CAS  PubMed  Google Scholar 

  35. Lorand, L. and R. M. Graham (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4: 140–156.

    Article  CAS  PubMed  Google Scholar 

  36. Touati, J., A. Angelini, M. J. Hinner, and C. Heinis (2011) Enzymatic cyclisation of peptides with a transglutaminase. Chembiochem. 12: 38–42.

    Article  CAS  PubMed  Google Scholar 

  37. Moulton, K. R., A. Sadiki, B. N. Koleva, L. J. Ombelets, T. H. Tran, S. Liu, B. Wang, H. Chen, E. Micheloni, P. J. Beuning, G. A. O’Doherty, and Z. S. Zhou (2019) Site-specific reversible protein and peptide modification: transglutaminase-catalyzed glutamine conjugation and bioorthogonal light-mediated removal. Bioconjug. Chem. 30: 1617–1621.

    Article  CAS  PubMed  Google Scholar 

  38. Kang, H. J., F. Coulibaly, F. Clow, T. Proft, and E. N. Baker (2007) Stabilizing isopeptide bonds revealed in Gram-positive bacterial pilus structure. Science. 318: 1625–1628.

    Article  CAS  PubMed  Google Scholar 

  39. Zakeri, B. and M. Howarth (2010) Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. J. Am. Chem. Soc. 132: 4526–4527.

    Article  CAS  PubMed  Google Scholar 

  40. Zakeri, B., J. O. Fierer, E. Celik, E. C. Chittock, U. Schwarz-Linek, V. T. Moy, and M. Howarth (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. USA. 109: E690–E697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schoene, C., J. O. Fierer, S. P. Bennett, and M. Howarth (2014) SpyTag/SpyCatcher cyclization confers resilience to boiling on a mesophilic enzyme. Angew. Chem. Int. Ed. Engl. 53: 6101–6104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reddington, S. C. and M. Howarth (2015) Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr. Opin. Chem. Biol. 29: 94–99.

    Article  CAS  PubMed  Google Scholar 

  43. Gilbert, C., M. Howarth, C. R. Harwood, and T. Ellis (2017) Extracellular self-assembly of functional and tunable protein conjugates from bacillus subtilis. ACS Synth. Biol. 6: 957–967.

    Article  CAS  PubMed  Google Scholar 

  44. Fierer, J. O., G. Veggiani, and M. Howarth (2014) SpyLigase peptide-peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture. Proc. Natl. Acad. Sci. USA. 111: E1176–E1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buldun, C. M., J. X. Jean, M. R. Bedford, and M. Howarth (2018) SnoopLigase catalyzes peptide-peptide locking and enables solid-phase conjugate isolation. J. Am. Chem. Soc. 140: 3008–3018.

    Article  CAS  PubMed  Google Scholar 

  46. Turner, M. D., B. Nedjai, T. Hurst, and D. J. Pennington (2014) Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta. 1843: 2563–2582.

    Article  CAS  PubMed  Google Scholar 

  47. Lipiäinen, T., M. Peltoniemi, S. Sarkhel, T. Yrjönen, H. Vuorela, A. Urtti, and A. Juppo (2015) Formulation and stability of cytokine therapeutics. J. Pharm. Sci. 104: 307–326.

    Article  PubMed  CAS  Google Scholar 

  48. Popp, M. W., S. K. Dougan, T. Y. Chuang, E. Spooner, and H. L. Ploegh (2011) Sortase-catalyzed transformations that improve the properties of cytokines. Proc. Natl. Acad. Sci. USA. 108: 3169–3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyafusa, T., R. Shibuya, W. Nishima, R. Ohara, C. Yoshida, and S. Honda (2017) Backbone circularization coupled with optimization of connecting segment in effectively improving the stability of granulocyte-colony stimulating factor. ACS Chem. Biol. 12: 2690–2696.

    Article  CAS  PubMed  Google Scholar 

  50. Miyafusa, T., R. Shibuya, and S. Honda (2018) Structural insights into the backbone-circularized granulocyte colony-stimulating factor containing a short connector. Biochem. Biophys. Res. Commun. 500: 224–228.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, H. X. (2004) Loops, linkages, rings, catenanes, cages, and crowders: entropy-based strategies for stabilizing proteins. Acc. Chem. Res. 37: 123–130.

    Article  CAS  PubMed  Google Scholar 

  52. Perrier, S., F. Darakhshan, and E. Hajduch (2006) IL-1 receptor antagonist in metabolic diseases: Dr Jekyll or Mr Hyde? FEBS Lett. 580: 6289–6294.

    Article  CAS  PubMed  Google Scholar 

  53. Rasche, N., J. Tonillo, M. Rieker, S. Becker, B. Dorr, D. Ter-Ovanesyan, U. A. K. Betz, B. Hock, and H. Kolmar (2016) Prolink-single step circularization and purification procedure for the generation of an improved variant of human growth hormone. Bioconjugate Chem. 27: 1341–1347.

    Article  CAS  Google Scholar 

  54. Iwai, H. and A. Plückthun (1999) Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. 459: 166–172.

    Article  CAS  PubMed  Google Scholar 

  55. Evans, T. C. Jr., D. Martin, R. Kolly, D. Panne, L. Sun, I. Ghosh, L. Chen, J. Benner, X. Q. Liu, and M. Q. Xu (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J. Biol. Chem. 275: 9091–9094.

    Article  CAS  PubMed  Google Scholar 

  56. Iwai, H., A. Lingel, and A. Plückthun (2001) Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyococcus furiosus. J. Biol. Chem. 276: 16548–16554.

    Article  CAS  PubMed  Google Scholar 

  57. Williams, N. K., P. Prosselkov, E. Liepinsh, I. Line, A. Sharipo, D. R. Littler, P. M. Curmi, G. Otting, and N. E. Dixon (2002) In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini-intein. J. Biol. Chem. 277: 7790–7798.

    Article  CAS  PubMed  Google Scholar 

  58. Sudheer, P. D., S. P. Pack, and T. J. Kang (2013) Cyclization tag for the detection and facile purification of backbone-cyclized proteins. Anal. Biochem. 436: 137–141.

    Article  CAS  PubMed  Google Scholar 

  59. Waldhauer, M. C., S. N. Schmitz, C. Ahlmann-Eltze, J. G. Gleixner, C. C. Schmelas, A. G. Huhn, C. Bunne, M. Büscher, M. Horn, N. Klughammer, J. Kreft, E. Schäfer, P. A. Bayer, S. G. Krämer, J. Neugebauer, P. Wehler, M. P. Mayer, R. Eils, and B. Di Ventura (2015) Backbone circularization of Bacillus subtilis family 11 xylanase increases its thermostability and its resistance against aggregation. Mol. Biosyst. 11: 3231–3243.

    Article  CAS  PubMed  Google Scholar 

  60. Jin, Y. L., A. Speers, A. T. Paulson, and R. J. Stewart (2004) Effects of β-glucans and environmental factors on the viscosities of wort and beer. J. I. Brewing. 110: 104–116.

    Article  CAS  Google Scholar 

  61. Wang, J., Y. Wang, X. Wang, D. Zhang, S. Wu, and G. Zhang (2016) Enhanced thermal stability of lichenase from Bacillus subtilis 168 by SpyTag/SpyCatcher-mediated spontaneous cyclization. Biotechnol Biofuels. 9: 79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lei, X. G., J. D. Weaver, E. Mullaney, A. H. Ullah, and M. J. Azain (2013) Phytase, a new life for an “Old” enzyme. Annu. Rev. Anim. Biosci. 1: 283–309.

    Article  PubMed  CAS  Google Scholar 

  63. Kanno, A., Y. Yamanaka, H. Hirano, Y. Umezawa, and T. Ozawa (2007) Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew. Chem. Int. Ed. 46: 7595–7599.

    Article  CAS  Google Scholar 

  64. Bayburt, T. H., J. W. Carlson, and S. G. Sligar (1998) Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J. Struct. Biol. 123: 37–44.

    Article  CAS  PubMed  Google Scholar 

  65. Nasr, M. L., D. Baptista, M. Strauss, Z. J. Sun, S. Grigoriu, S. Huser, A. Plückthun, F. Hagn, T. Walz, J. M. Hogle, and G. Wagner (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat. Methods. 14: 49–52.

    Article  CAS  PubMed  Google Scholar 

  66. Nasr, M. L. and G. Wagner (2018) Covalently circularized nanodiscs; challenges and applications. Curr. Opin. Struc. Biol. 51: 129–134.

    Article  CAS  Google Scholar 

  67. Yusuf, Y., J. Massiot, Y. T. Chang, P. H. Wu, V. Yeh, P. C. Kuo, J. Shiue, and T. Y. Yu (2018) Optimization of the production of covalently circularized nanodiscs and their characterization in physiological conditions. Langmuir. 34: 3525–3532.

    Article  CAS  PubMed  Google Scholar 

  68. Young, T. S., D. D. Young, I. Ahmad, J. M. Louis, S. J. Benkovic, and P. G. Schultz (2011) Evolution of cyclic peptide protease inhibitors. Proc. Natl. Acad. Sci. USA. 108: 11052–11056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bi, X., J. Yin, X. Hemu, C. Rao, J. P. Tam, and C. F. Liu (2018) Immobilization and intracellular delivery of circular proteins by modifying a genetically incorporated unnatural amino acid. Bioconjug Chem. 29: 2170–2175.

    Article  CAS  PubMed  Google Scholar 

  70. Won, Y., A. D. Pagar, M. D. Patil, P. E. Dawson, and H. Yun (2019) Recent advances in enzyme engineering through incorporation of unnatural amino acids. Biotechnol. Bioprocess Eng. 24: 592–604.

    Article  CAS  Google Scholar 

  71. Yang, R. L., Y. H. Wong, G. K. T. Nguyen, J. P. Tam, J. Lescar, and B. Wu (2017) Engineering a catalytically efficient recombinant protein ligase. J. Am. Chem. Soc. 139: 5351–5358.

    Article  CAS  PubMed  Google Scholar 

  72. Toplak, A., T. Nuijens, P. J. L. M. Quaedflieg, B. Wu, and D. B. Janssen (2016) Peptiligase, an enzyme for efficient chemoenzymatic peptide synthesis and cyclization in water. Adv. Synth. Catal. 358: 2140–2147.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the research grant of Dongguk University (S2019G000100065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taek Jin Kang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purkayastha, A., Kang, T.J. Stabilization of Proteins by Covalent Cyclization. Biotechnol Bioproc E 24, 702–712 (2019). https://doi.org/10.1007/s12257-019-0363-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0363-4

Keywords

Navigation