Skip to main content
Log in

Optimization of Biodiesel Production from Waste Coffee Grounds by Simultaneous Lipid Extraction and Transesterification

  • Research Paper
  • Bioprocess Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We previously optimized a conventional twostep process (TSP) for biodiesel production using waste coffee grounds (WCGs). In the present study, a novel process, one-step direct process (OSDP) comprised of lipid extraction and simultaneous transesterification in a reactor, was evaluated for biodiesel production for WCGs, and compared with TSP. Owing to a relatively low free-fatty acid content (2.3%), an alkaline catalyst, NaOH, was readily used in this process. We found that a mixture of methanol and n-hexane was the best combination for the OSDP. Optimization of OSDP was conducted by statistical technique, followed by one-factor-at-a-time and sensitivity analysis techniques. Using these techniques, 10.8% (gbiodiesel/ g-WCGs) biodiesel yield was achieved at 3.0 wt% of catalyst relative to WCGs, 3.0 mL methanol/g-WCGs, 4.5mL n-hexane/g-WCGs, 45°C, and 9 h of reaction time. Compared to the TSP, the OSDP saved methanol and n-hexane requirement by 69.7% and 67.2%, respectively, while the actual biodiesel yields based on the lipid amount in WCGs were similar in both processes. This study showed that the novel OSDP could be a promising alternative to TSP for economic biodiesel production from WCGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Go, Y. W. and S. H. Yeom (2017) Statistical analysis and optimization of biodiesel production from waste coffee grounds by a two-step process. Biotechnol. Bioprocess Eng. 22: 440–449.

    Article  CAS  Google Scholar 

  2. Huang, J., J. Xia, W. Jiang, Y. Li, and J. Li (2015) Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour. Technol. 180: 47–53.

    Article  CAS  Google Scholar 

  3. Talebian-Kiakalaieh, A., N. A. S. Amin, and H. Mazaheri (2013) A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy. 104: 683–710.

    Article  CAS  Google Scholar 

  4. Hong, I. K., H. Jeon, H. Kim, and S. B. Lee (2016) Preparation of waste cooking oil based biodiesel using microwave irradiation energy. J. Ind. Eng. Chem. 42: 107–112.

    Article  CAS  Google Scholar 

  5. Kwon, M. H. and S. H. Yeom (2015) Optimization of one-step extraction and transesterification process for biodiesel production from the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway pond. Biotechnol. Bioprocess Eng. 20: 276–283.

    Article  CAS  Google Scholar 

  6. Wu, S., L. Song, M. Sommerfeld, Q. Hu, and W. Chen (2017) Optimization of an effective method for the conversion of crude algal lipids into biodiesel. Fuel. 197: 467–473.

    Article  CAS  Google Scholar 

  7. Olkiewicz, M., N. V. Plechkova, M. J. Earle, A. Fabregat, F. Stüber, A. Fortuny, J. Font, and C. Bengoa (2016) Biodiesel production from sewage sludge lipids catalysed by Brønsted acidic ionic liquids. Appl. Catal. B. 181: 783–746.

    Article  Google Scholar 

  8. Supaporn, P. and S. H. Yeom (2017) Optimization of a one-step direct process for biodiesel production from blended sewage sludge. Korean. J. Chem. Eng. 34: 360–365.

    Article  CAS  Google Scholar 

  9. Caetano, N., V. F. M. Silva, and T. M. Mata (2012) Valorization of coffee grounds for biodiesel production. Chem. Eng. Trans. 26: 267–272.

    Google Scholar 

  10. Liu, Y., Q. Tu, G. Knothe, and M. Lu (2017) Direct transesterification of spent coffee grounds for biodiesel production. Fuel. 199: 157–161.

    Article  CAS  Google Scholar 

  11. United States Department of Agriculture, Foreign Agricultural (USDA) Foreign Agricultural Service: Coffee: World Markets and Trade. https://www.fas.usda.gov/data/coffee-world-marketsand-trade.

  12. World Coffee Consumption, International Coffee Organization (ICO). http://www.ico.org.

  13. Al-Hamamre, Z., S. Foerster, F. Hartmann, M. Kröger, and M. Kaltschmitt (2012) Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel. 96: 70–76.

    Article  CAS  Google Scholar 

  14. Kondamudi, N., S. K. Mohapatra, and M. Misra (2008) Spent coffee grounds as a versatile source of green energy. J. Agric. Food Chem. 56: 11757–11760.

    Article  CAS  Google Scholar 

  15. Kartika, I. A., M. Yani, D. Ariono, P. Evon, and L. Rigal (2013) Biodiesel production from jatropha seeds: Solvent extraction and in situ transesterification in a single step. Fuel. 106: 111–117.

    Article  Google Scholar 

  16. Supaporn, P. and S. H. Yeom (2016) Optimization of a two-step biodiesel production process comprised of lipid extraction from blended sewage sludge and subsequent lipid transesterification. Biotechnol. Bioprocess Eng. 21: 551–560.

    Article  CAS  Google Scholar 

  17. Harrington, K. J. and C. D'Arcy-Evans (1985) A comparison of conventional and in situ methods of transesterification of seed oil from a series of sunflower cultivars. J. Am. Oil Chem. Soc. 62: 1009–1013.

    Article  CAS  Google Scholar 

  18. Kim, T. H., W. I. Suh, G. Yoo, S. K. Mishra, W. Farooq, M. Moon, A. Shrivastav, M. S. Park, and J. W. Yang (2015) Development of direct conversion method for microalgal biodiesel production using wet biomass of Nannochloropsis salina. Bioresour. Technol. 191: 438–444.

    Article  CAS  Google Scholar 

  19. Tsigie, Y. A., L. H. Huynh, S. Ismadji, A. M. Engida, and Y. H. Ju (2012) In situ biodiesel production from wet Chlorella vulgaris under subcritical condition. Chem. Eng. J. 213: 104–108.

    Article  CAS  Google Scholar 

  20. Koutsouki, A. A., E. Tegou, A. Badeka, S. Kontakos, P. J. Pomonis, and M. G. Kontominas (2016) In situ and conventional transesterification of rapeseeds for biodiesel production: The effect of direct sonication. Ind. Crops Prod. 84: 399–407.

    Article  CAS  Google Scholar 

  21. Wang, Y., S. Feng, X. Bai, J. Zhao, and S. Xia (2016) Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plants. Waste Manag. 47: 91–97.

    Article  Google Scholar 

  22. Latimer, G. (2016) Official Methods of Analysis of AOAC International. 20th ed., p. 1298. Association of Official Analytical Chemists, Virginia, USA.

    Google Scholar 

  23. Rukunudin, I. H., P. J. White, C. J. Bern, and T. B. Bailey (1998) A modified method for determining free fatty acids from small soybean oil sample sizes. J. Amer. Oil Chem. Soc. 75: 563–568.

    Article  CAS  Google Scholar 

  24. Jenkins, R. W., N. E. Stageman, C. M. Fortune, and C. J. Chuck (2014) Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds. Energy Fuels. 28: 1166–1174.

    Article  CAS  Google Scholar 

  25. Rocha, M. V. P., L. J. B. L. De Matos, L. P. Lima, P. M. S. Figueiredo, I. L. Lucena, F. A. N. Fernandes, and L. R. B. Goncalves (2014) Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds. Bioresour. Technol. 167: 343–348.

    Article  CAS  Google Scholar 

  26. Vardon, D. R., B. R. Moser, W. Zheng, K. Witkin, R. L. Evangelista, T. J. Strathmann, K. Rajagopalan, and B. K. Sharma (2013) Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustain. Chem. Eng. 1: 1286–1294.

    Article  CAS  Google Scholar 

  27. Couto, R. M., J. Fernandes, M. D. R. G. da Silva, and P. C. Simoes (2009) Supercritical fluid extraction of lipids from spent coffee grounds. J. Supercritic. Fluids. 51: 159–166.

    Article  CAS  Google Scholar 

  28. Freedman, B., E. H. Pryde, and T. L. Mounts (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc.61: 1638–1643.

    Article  CAS  Google Scholar 

  29. Cai, Z. Z., Y. Wang, Y. L. Teng, K. M. Chong, J. W. Wang, J. W. Zhang, and D. P. Yang (2015) A two-step biodiesel production process from waste cooking oil via recycling crude glycerol esterification catalyzed by alkali catalyst. Fuel Process. Technol. 137: 186–193.

    Article  CAS  Google Scholar 

  30. Niladevi, K. N., R. K. Sukumaran, N. Jacob, G. S. Anisha, and P. Prema (2009) Optimization of laccase production from a novel strain—Streptomyces psammoticus using response surface methodology. Microbiol. Res. 164: 105–113.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01060540 and 2018R1D1A1B07051113).

The authors greatly appreciate these supports.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Yeom.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y., Yeom, S.H. Optimization of Biodiesel Production from Waste Coffee Grounds by Simultaneous Lipid Extraction and Transesterification. Biotechnol Bioproc E 25, 320–326 (2020). https://doi.org/10.1007/s12257-019-0353-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0353-6

Keywords

Navigation