Skip to main content
Log in

Engineering Escherichia coli to Sense Non-native Environmental Stimuli: Synthetic Chimera Two-component Systems

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The Two-component Regulatory System (TCS) is the primary mode that bacteria use to continuously sense the environment. A TCS is comprised of a periplasmic sensor Histidine kinase (HK) domain and a cytoplasmic Response regulator (RR) domain. The HK domain phosphorylates the RR domain to activate the effector gene expression. Utilizing a rational approach, the sensor HK was genetically engineered in Escherichia coli to create chimeric HK, by a rewiring or domain swapping strategy. Apart from the wild-type characteristics, chimeric HK imparts novel or the desired characteristics and ability to genetically engineered E. coli for its adaptation and survival. This review focuses on the design, potential applications, and future perspectives of chimeric HKs used as high throughput screening biosensors of various compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, Y. J., K. H. Lee, M. S. Baek, and D. M. Kim (2017) High-throughput engineering of initial coding regions for maximized production of recombinant proteins. Biotechnol. Bioprocess Eng. 22: 497–503.

    CAS  Google Scholar 

  2. Seo, J. H., S. W. Baek, J. Lee, and J. B. Park (2017) Engineering Escherichia coli BL21 genome to improve the heptanoic acid tolerance by using CRISPR-Cas9 system. Biotechnol. Bioprocess Eng. 22: 231–238.

    CAS  Google Scholar 

  3. Lee, H. M., B. Y. Jeon, and M. K. Oh (2016) Microbial production of ethanol from acetate by engineered Ralstonia eutropha. Biotechnol. Bioprocess Eng. 21: 402–407.

    CAS  Google Scholar 

  4. Chae, C. G., Y. J. Kim, S. J. Lee, Y. H. Oh, J. E. Yang, J. C. Joo, K. H. Kang, Y. A. Jang, H. Lee, A. R. Park, B. K. Song, S. Y. Lee, and S. J. Park (2016) Biosynthesis of poly(2-hydroxybutyrate-colactate) in metabolically engineered Escherichia coli. Biotechnol. Bioprocess Eng. 21: 169–174.

    CAS  Google Scholar 

  5. Andrianantoandro, E., S. Basu, D. K. Karig, and R. Weiss (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2: 1–14.

    Google Scholar 

  6. Pryciak, P. M. (2009) Designing new cellular signaling pathways. Chem. Biol. 16: 249–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Laub, M. T. and M. Goulian (2007) Specificity in Two-Component Signal Transduction Pathways. Annu. Rev. Genet. 41: 121–145.

    CAS  PubMed  Google Scholar 

  8. Stock, A. M., V. L. Robinson, and P. N. Goudreau (2000) Two-component signal transduction. Annu. Rev. Biochem. 69: 183–215.

    CAS  PubMed  Google Scholar 

  9. Casino, P., V. Rubio, and A. Marina (2010) The mechanism of signal transduction by two-component systems. Curr. Opin. Struct. Biol. 20: 763–771.

    CAS  PubMed  Google Scholar 

  10. Wang, B., M. Barahona, M. Buck, and J. Schumacher (2013) Rewiring cell signalling through chimaeric regulatory protein engineering. Biochem. Soc. Trans. 41: 1195–1200.

    PubMed  PubMed Central  Google Scholar 

  11. Forst, S., J. Delgado, and M. Inouye (1989) Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc. Natl. Acad. Sci. USA. 86: 6052–6056.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Aiba, H., F. Nakasai, S. Mizushima, and T. Mizuno (1989) Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, results in stimulation of its DNA-binding ability. J. Biochem. 106: 5–7.

    CAS  PubMed  Google Scholar 

  13. Igo, M. M. and T. J. Silhavy (1988) EnvZ, a transmembrane environmental sensor of Escherichia coli K-12, is phosphorylated in vitro. J. Bacteriol. 170: 5971–5973.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Forst, S., D. Comeau, S. Norioka, and M. Inouye (1987) Localization and membrane topology of EnvZ, a protein involved in osmoregulation of OmpF and OmpC in Escherichia coli. J. Biol. Chem. 262: 16433–16438.

    CAS  PubMed  Google Scholar 

  15. Utsumi, R., R. E. Brissette, A. Rampersaud, S. A. Forst, K. Oosawa, and M. Inouye (1989) Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 245: 1246–1249.

    CAS  PubMed  Google Scholar 

  16. Yang, Y., H. Park, and M. Inouye (1993) Ligand binding induces an asymmetrical transmembrane signal through a receptor dimer. J. Mol. Biol. 232: 493–498.

    CAS  PubMed  Google Scholar 

  17. Zhu, Y. and M. Inouye (2003) Analysis of the role of the EnvZ linker region in signal transduction using a chimeric Tar/EnvZ receptor protein, Tez1. J. Biol. Chem. 278: 22812–22819.

    CAS  PubMed  Google Scholar 

  18. Baumgartner, J. W., C. Kim, R. E. Brissette, M. Inouye, C. Park, and G. L. Hazelbauer (1994) Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensor EnvZ. J. Bacteriol. 176: 1157–1163.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Unden, G. and A. Kleefeld (2004) C4-dicarboxylate degradation in aerobic and anaerobic growth. p.pp. chapter 3.4.5. ASM Press, DC, USA.

    Google Scholar 

  20. Ganesh, I., S. Ravikumar, S. H. Lee, S. J. Park, and S. H. Hong (2013) Engineered fumarate sensing Escherichia coli based on novel chimeric two-component system. J. Biotechnol. 168: 560–566.

    CAS  PubMed  Google Scholar 

  21. Forst, S. A. and D. L. Roberts (1994) Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Res. Microbiol. 145: 363–373.

    CAS  PubMed  Google Scholar 

  22. Aiba, H. and T. Mizuno (1990) Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, stimulates the transcription of the ompF and ompC genes in Escherichia coli. FEBS Lett. 261: 19–22.

    CAS  PubMed  Google Scholar 

  23. Golby, P., S. Davies, D. J. Kelly, J. R. Guest, and S. C. Andrews (1999) Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli. J. Bacteriol. 181: 1238–1248.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Alteri, C. J., S. D. Himpsl, M. D. Engstrom, and H. L. T. Mobley (2012) Anaerobic respiration using a complete oxidative TCA cycle drives multicellular swarming in proteus mirabilis. mBio. 3.

    Google Scholar 

  25. Zhang, X., X. Wang, K. T. Shanmugam, and L. O. Ingram (2011) L-malate production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 77: 427–434.

    CAS  PubMed  Google Scholar 

  26. Bressler, E., O. Pines, I. Goldberg, and S. Braun (2002) Conversion of fumaric acid to L-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor. Biotechnol. Prog. 18: 445–450.

    CAS  PubMed  Google Scholar 

  27. Rosenberg, M., H. Mikova, and L. Kristofikova (1999) Formation of L-malic acid by yeasts of the genus Dipodascus. Lett. Appl. Microbiol. 29: 221–223.

    CAS  PubMed  Google Scholar 

  28. Ganesh, I., S. Ravikumar, I. K. Yoo, and S. H. Hong (2015) Construction of malate-sensing Escherichia coli by introduction of a novel chimeric two-component system. Bioprocess Biosyst. Eng. 38: 797–804.

    CAS  PubMed  Google Scholar 

  29. Levskaya, A., A. A. Chevalier, J. J. Tabor, Z. B. Simpson, L. A. Lavery, M. Levy, E. A. Davidson, A. Scouras, A. D. Ellington, E. M. Marcotte, and C. A. Voigt (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438: 441–442.

    CAS  PubMed  Google Scholar 

  30. Sonawane, A. M., B. Singh, and K. H. Rohm (2006) The AauRAauS two-component system regulates uptake and metabolism of acidic amino acids in Pseudomonas putida. Appl. Environ. Microbiol. 72: 6569–6577.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ravikumar, S., I. Ganesh, M. K. Maruthamuthu, and S. H. Hong (2015) Engineering Escherichia coli to sense acidic amino acids by introduction of a chimeric two-component system. Korean J. Chem. Eng. 32: 2073–2077.

    CAS  Google Scholar 

  32. Rabin, R. S. and V. Stewart (1993) Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate-and nitrite-regulated gene expression in Escherichia coli K-12. J. Bacteriol. 175: 3259–3268.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lehning, C. E., J. B. Heidelberger, J. Reinhard, M. H. H. Norholm, and R. R. Draheim (2017) A modular high-throughput in vivo screening platform based on chimeric bacterial receptors. ACS Synth. Biol. 6: 1315–1326.

    CAS  PubMed  Google Scholar 

  34. Nguyen, A. D., I. Y. Hwang, J. Y. Chan, and E. Y. Lee (2016) Reconstruction of methanol and formate metabolic pathway in non-native host for biosynthesis of chemicals and biofuels. Biotechnol. Bioprocess Eng. 21: 477–482.

    CAS  Google Scholar 

  35. Xin, J. Y., J. R. Cui, J. Z. Niu, S. F. Hua, C. G. Xia, S. B. Li, and L. M. Zhu (2004) Production of methanol from methane by methanotrophic bacteria. Biocatal. Biotransfor. 22: 225–229.

    CAS  Google Scholar 

  36. Schink, B. and J. G. Zeikus (1980) Microbial methanol formation: A major end product of pectin metabolism. Curr. Microbiol. 4: 387–389.

    CAS  Google Scholar 

  37. Ganesh, I., S. Vidhya, G. T. Eom, and S. H. Hong (2017) Construction of methanol-sensing Escherichia coli by the introduction of a Paracoccus denitrificans MxaY-based chimeric two-component system. J. Microbiol. Biotechnol. 27: 1106–1111.

    CAS  PubMed  Google Scholar 

  38. Brusstar MJ, H. D., Gray Jr CL. (2008) Environmental and human health considerations for methanol as a transportation fuel. Proceedings of the Presented at the 17th International Symposium on Alternative Fuels. 14 October. Taiyuan, China.

    Google Scholar 

  39. Harms, N., W. N. M. Reijnders, S. Koning, and R. J. M. van Spanning (2001) Two-component system that regulates methanol and formaldehyde oxidation in Paracoccus denitrificans. J. Bacteriol. 183: 664–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Selvamani, V., I. Ganesh, M. K. Maruthamuthu, G. T. Eom, and S. H. Hong (2017) Engineering chimeric two-component system into Escherichia coli from Paracoccus denitrificans to sense methanol. Biotechnol Bioprocess Eng. 22: 225–230.

    CAS  Google Scholar 

  41. Chistoserdova, L., S. W. Chen, A. Lapidus, and M. E. Lidstrom (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J. Bacteriol. 185: 2980–2987.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, H. H., J. J. Janka, M. Viebahn, and R. S. Hanson (1995) Nucleotide sequence of the mxcQ and mxcE genes, required for methanol dehydrogenase synthesis in Methylobacterium organophilum XX: a two-component regulatory system. Microbiol. 141: 2543–2551.

    CAS  Google Scholar 

  43. Selvamani, V., M. K. Maruthamuthu, K. Arulsamy, G. T. Eom, and S. H. Hong (2017) Construction of methanol sensing Escherichia coli by the introduction of novel chimeric MxcQZ/OmpR twocomponent system from Methylobacterium organophilum XX. Korean J. Chem. Eng. 34: 1734–1739.

    CAS  Google Scholar 

  44. Yeh, K. C., S. H. Wu, J. T. Murphy, and J. C. Lagarias (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505–1508.

    CAS  PubMed  Google Scholar 

  45. Moglich, A., R. A. Ayers, and K. Moffat (2009) Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17: 1282–1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Moglich, A., R. A. Ayers, and K. Moffat (2009) Design and signaling mechanism of light-regulated histidine kinases. J. Mol. Biol. 385: 1433–1444.

    CAS  PubMed  Google Scholar 

  47. Sugie, Y., M. Hori, S. Oka, H. Ohtsuka, and H. Aiba (2016) Reconstruction of a chromatic response system in Escherichia coli. J. Gen. Appl. Microbiol. 62: 140–143.

    CAS  PubMed  Google Scholar 

  48. Hori, M., S. Oka, Y. Sugie, H. Ohtsuka, and H. Aiba (2017) Construction of a photo-responsive chimeric histidine kinase in Escherichia coli. J. Gen. Appl. Microbiol. 63: 44–50.

    CAS  PubMed  Google Scholar 

  49. Kefala, G., W. Kwiatkowski, L. Esquivies, I. Maslennikov, and S. Choe (2007) Application of Mistic to improving the expression and membrane integration of histidine kinase receptors from Escherichia coli. J. Struct. Funct. Genomics. 8: 167–172.

    CAS  PubMed  Google Scholar 

  50. Roosild, T. P., M. Vega, S. Castronovo, and S. Choe (2006) Characterization of the family of Mistic homologues. BMC Struct. Biol. 6: 10.

    PubMed  PubMed Central  Google Scholar 

  51. Blain, K. Y., W. Kwiatkowski, and S. Choe (2010) The functionally active Mistic-fused histidine kinase receptor, EnvZ. Biochemistry 49: 9089–9095.

    CAS  PubMed  Google Scholar 

  52. Radaev, S., Z. Zou, T. Huang, E. M. Lafer, A. P. Hinck, and P. D. Sun (2010) Ternary complex of transforming growth factor-β1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily. J. Biol. Chem. 285: 14806–14814.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Anantharaman, V., S. Balaji, and L. Aravind (2006) The signaling helix: a common functional theme in diverse signaling proteins. Biol. Direct. 1: 25.

    PubMed  PubMed Central  Google Scholar 

  54. Kupferschmied, P., M. Pechy-Tarr, N. Imperiali, M. Maurhofer, and C. Keel (2014) Domain shuffling in a sensor protein contributed to the evolution of insect pathogenicity in plantbeneficial Pseudomonas protegens. PLoS Pathog. 10: e1003964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ho Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, I., Kim, T.W., Na, JG. et al. Engineering Escherichia coli to Sense Non-native Environmental Stimuli: Synthetic Chimera Two-component Systems. Biotechnol Bioproc E 24, 12–22 (2019). https://doi.org/10.1007/s12257-018-0252-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0252-2

Keywords

Navigation