Skip to main content
Log in

A high performance bench scale process for isolation from inclusion bodies, refolding and dimerisation of a thiol-engineered recombinant therapeutic protein

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The use of laboratory procedures is often inefficient for materialisation of recombinant therapeutic proteins in Escherichia coli (E. coli) for pre-clinical evaluation. Approaches such as scaling out shake flask cultivation can be laborious, inefficient and expensive. These inefficiencies can be compounded if the protein requires post-translational modification such as multimerisation. We previously used laboratory methods to produce the < 60 kDa, recombinant biotherapeutic, RB1. We were aware, a priori, that dimerisation of RB1 could double the molecular weight of the protein and increase its systemic retention in the human body by avoiding renal filtration. Here we modified RB1 by substituting a native residue for an unpaired cysteine, generating eRB1, in order to favour its dimerisation. Laboratory methods failed to achieve > 20% disulphide-bridged homodimerisation or monomer of sufficient purity to enable chemi-dimerisation. As such we established a set of high performance, bench-scale, unit operations for cultivation of E. coli cells expressing eRB1, the isolation of eRB1 inclusion bodies, refolding and disulphide-based dimerisation of ≥ 40% of total eRB1 and finally successful chemi-dimerisation of remaining monomeric eRB1. The establishment of scalable procedures can now enable future investigations of eRB1 and other < 60 kDa biologics for which significant bench-scale production is required for pre-clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vazquez, E., J. Corchero, and A. Villaverde (2011) Post-production protein stability: Trouble beyond the cell factory. Microb. Cell Factories 10: 60–66.

    Article  CAS  Google Scholar 

  2. Hellebust, H., M. Murby, L. Abrahmsén, M. Uhlén, and S. O. Enfors (1989) Different approaches to stabilize a recombinant fusion protein. Nat. Biotechnol. 7: 165–168.

    Article  CAS  Google Scholar 

  3. Palmer, I. and P. T. Wingfield (2004) Preparation and extraction of insoluble (Inclusion-Body) proteins from Escherichia coli. In: J. E. Coligan, B. M. Dunn, D. W. Speicher, and P. T. Wingfield (eds.). Current Protocols in Protein Science. John Wiley & Sons Inc., Hoboken, NJ, USA.

    Google Scholar 

  4. Trusheim, M. R. and E. R. Berndt (2015) The clinical benefits, ethics, and economics of stratified medicine and companion diagnostics. Drug Discov. Today 20: 1439–1450.

    Article  Google Scholar 

  5. Junttila, M. R. and F. J. de Sauvage (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501: 346–354.

    Article  CAS  Google Scholar 

  6. Trivedi, M. V., J. S. Laurence, and T. J. Siahaan (2009) The role of thiols and disulfides on protein stability. Curr. Protein Pept. Sci. 10: 614–625.

    Article  CAS  Google Scholar 

  7. Auclair, J. R., K. J. Boggio, G. A. Petsko, D. Ringe, and J. N. Agar (2010) Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. 107: 21394–21399.

    Article  CAS  Google Scholar 

  8. Prinz, W. A., F. Aslund, A. Holmgren, and J. Beckwith (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272: 15661–15667.

    Article  CAS  Google Scholar 

  9. Hermanson, G. T. (2008) Bioconjugate techniques. 2nd ed., pp. 1202, Academic Press, San Diego, USA.

    Google Scholar 

  10. Moore, J. E. and W. H. Ward (1956) Cross-linking of bovine plasma albumin and wool keratin. J. Am. Chem. Soc. 78: 2414–2418.

    Article  CAS  Google Scholar 

  11. Yoshitake, S., M. Imagawa, E. Ishikawa, Y. Niitsu, I. Urushizaki, and M. Nishiura (1982) Mild and efficient conjugation of rabbit Fab’ and horseradish peroxidase using a maleimide compound and its use for enzyme immunoassay. J. Biochem. 92: 1413–1424.

    Article  CAS  Google Scholar 

  12. Baldwin, A. D. and K. L. Kiick (2011) Tunable degradation of maleimide–thiol adducts in reducing environments. Bioconjug. Chem. 22: 1946–1953.

    Article  CAS  Google Scholar 

  13. Fontaine, S. D., R. Reid, L. Robinson, G. W. Ashley, and D. V. Santi (2015) Long-term stabilization of maleimide–thiol conjugates. Bioconjug. Chem. 26: 145–152.

    Article  CAS  Google Scholar 

  14. Ho, R. J. Y. and M. Gibaldi (2013) Biotechnology and biopharmaceuticals: Transforming proteins and genes into drugs. 2nd ed., pp.698, Wiley-Blackwell, Hoboken, NJ, USA.

    Book  Google Scholar 

  15. Green, M. R. and J. Sambrook (2012) Molecular cloning: A laboratory manual. 4th ed., p. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  16. Matos, C. F. R. O., S. D. Branston, A. Albiniak, A. Dhanoya, R. B. Freedman and E. Keshavarz-Moore (2012) High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli. Biotechnol. Bioeng. 109: 2533–2542.

    Article  CAS  Google Scholar 

  17. Mannall, G. (2007) Characterisation of the effect of process factors upon protein refolding yield. Ph.D. Thesis. University College London, London, UK.

    Google Scholar 

  18. Nesbeth, D. N., M. A. Perez-Pardo, S. Ali, J. Ward, and E. Keshavarz-Moore (2012) Growth and productivity impacts of periplasmic nuclease expression in an Escherichia coli Fab’ fragment production strain. Biotechnol. Bioeng. 109: 517–527.

    Article  CAS  Google Scholar 

  19. Guiliano, B., H. Fussell, I. Lenart, E. Tsao, D. N. Nesbeth, A. J. Fletcher, E. C. Campbell, N. Yousaf, S. Williams, A. Cameron, G. J. Towers, P. Kellam, D. N. Hebert, K. Gould, S. J. Powis, and A. N. Antoniou (2014) EDEM1 targets misfolded HLA-B27 dimers for endoplasmic reticulum associated degradation. Arthritis Rheumatol. 66: 2976–2988.

    Article  CAS  Google Scholar 

  20. Zelikin, A. N., J. F. Quinn, and F. Caruso (2006) Disulfide crosslinked polymer capsules: En route to biodeconstructible systems. Biomacromol. 7: 27–30.

    Article  CAS  Google Scholar 

  21. Ovsejevi, K., C. Manta, and F. Batista-Viera (2013) Reversible covalent immobilization of enzymes via disulfide bonds. Methods Mol. Biol. 1051: 89–116.

    Article  CAS  Google Scholar 

  22. Wilbourn, B., D. N. Nesbeth, L. J. Wainwright, and M. C. Field (1998) Proteasome and thiol involvement in quality control of glycosylphosphatidylinositol anchor addition. Biochem. J. 332: 111–118.

    Article  CAS  Google Scholar 

  23. Bessette, P. H. (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. 96: 13703–13708.

    Article  CAS  Google Scholar 

  24. Thomas, J. G. and F. Baneyx (1996) Protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK-DnaJGrpE and GroEL-GroES molecular chaperone machines. Mol. Microbiol. 21: 1185–1196.

    Article  CAS  Google Scholar 

  25. Levy, R., R. Weiss, G. Chen, B. L. Iverson, and G. Georgiou (2001). Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr. Purif. 23: 338–347.

    Article  CAS  Google Scholar 

  26. Burgess, R. R. (2009). Refolding solubilized inclusion body proteins. Meth. Enzymol. 463: 259–282.

    Article  CAS  Google Scholar 

  27. Tous, G. I., Z. Wei, J. Feng, S. Bilbulian, S. Bowen, and J. Smith (2005) Characterization of a novel modification to monoclonal antibodies: Thioether cross-link of heavy and light chains. Anal. Chem. 77: 2675–2682.

    Article  CAS  Google Scholar 

  28. Smith, M. E. B., F. F. Schumacher, C. P. Ryan, L. M. Tedaldi, D. Papaioannou, and G. Waksman (2010) Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 132: 19601965.

    Google Scholar 

  29. Kitagishi, H., H. Kawasaki, and K. Kano (2015) Bioconjugation of serum albumin to a maleimide-appended porphyrin/Cyclodextrin supramolecular complex as an artificial oxygen carrier in the bloodstream. Chem -Asian J. 10: 1768–1775.

    Article  CAS  Google Scholar 

  30. Ausubel, F., R. Brent, R. Kingston, D. Moore, J. Seidman, J. Smith, and K. Struhl (1987) Current Protocols in Molecular Biology. 3rd ed. John Wiley and Sons Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren N. Nesbeth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schofield, D.M., Nesbeth, D.N. A high performance bench scale process for isolation from inclusion bodies, refolding and dimerisation of a thiol-engineered recombinant therapeutic protein. Biotechnol Bioproc E 22, 423–430 (2017). https://doi.org/10.1007/s12257-016-0385-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0385-0

Keywords

Navigation