Skip to main content
Log in

Aggregate cell suspension cultures of Psoralea corylifolia improved phytoestrogens production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The intensity of the hydrodynamic stress on cell aggregates is closely related to the growth and production of secondary metabolites. In this study, we have investigated the effects of cell aggregation in suspension cultures of Psoralea corylifolia on growth and phytoestrogens production. HPLC analysis revealed that cell aggregates of 1.2 mm size produced maximum amount of daidzein (2.84% dry wt.) and genistein (0.47% dry wt.) on day 20. The phytoestrogens production level was ~2-fold more than that of heterogeneous cell aggregates (control) in suspension cultures and 11-fold more than field grown plants. Analysis of spent medium revealed no leaching of phytoestrogens. Results indicated that certain degree of cell aggregation in suspension cultures directly supported phytoestrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsu, Y., C. Wu, J. Chem, Y. Yang, and S. Wang (2001) The presence of three isoflavonoid compounds in Psoralea corylifolia. J. Chromato. Sci. 39: 441–444.

    Article  CAS  Google Scholar 

  2. Shinde, A. N., N. Malpathak, and D. P. Fulzele (2010) Determination of isoflavones content and antioxidant activity in Psoralea corylifolia L. callus cultures. Food Chem. 118: 128–132.

    Article  CAS  Google Scholar 

  3. Mueller, S. O. and K. S. Korach (2001) Mechanism of estrogen receptor-mediated agonistic and antagonistic effects. pp. 1–25. In: Metzler, M. (eds). Endocrine Disruptors. Springer, Heidelberg, Berlin.

    Google Scholar 

  4. Hwang, C. S., H. S. Kwak, H. J. Lim, S. H. Lee, Y. S. Kang, and T. B. Choe (2006) Isoflavone metabolites and their in vitro dual functions: They can play estrogenic agonist or antagonist depending on the estrogen concentration. J. Steroid Biochem. Mol. Biol. 101: 246–253.

    Article  CAS  Google Scholar 

  5. Coward, L., N. C. Barnes, K. D. R. Setchell, and S. Barnes, (1993) Genistein, daidzein and their β-glycosides conjugates: anti-tumor isoflavones in soybean food from America and Asian diets. J. Agric. Food Chem. 41: 1961–1967.

    Article  CAS  Google Scholar 

  6. Sun, N. J., S. H. Woo, J. M. Cassady, and R. M. Snapka (1998) DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia. J. Nat. Prod. 61: 362–366.

    Article  CAS  Google Scholar 

  7. Qiang, R. M., G. Kuhn, J. Wegner, and J. Chen (2001) Isoflavones, substances with multi-biological and clinical properties. Eur. J. Nutr. 40: 135–146.

    Article  Google Scholar 

  8. Lissin, L. W. and J. P. Cooke (2000) Phytoestorgens and cardiovascular health. J. Ameri. College Cardiol. 35: 1403–1410.

    Article  CAS  Google Scholar 

  9. Siva, R., S. Mayes, S. K. Behera, and C. Rajasekaran (2012) Anthraquinones dye production using root cultures of Oldenlandia umbellata L. Industrial Crop. Prod. 37: 415–419.

    Article  CAS  Google Scholar 

  10. Siva, R., C. Rajasekaran, and G. Mudgal (2009) Induction of somatic embryogenesis and organogenesis in Oldenlandia umbellata L., a dye-yielding medicinal plant. Plant Cell Tiss. Org. Cult. 98: 205–211.

    Article  CAS  Google Scholar 

  11. Satdive, R. K., D. P, Fulzele, and S. Eapen (2007) Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J. Biotech. 128: 281–289.

    Article  CAS  Google Scholar 

  12. Shinde, A. N., N. Malpathak, and D. P. Fulzele (2009) Studied enhancement strategies for phytoestrogens production in shake flasks by suspension culture of Psoralea corylifolia. Bioresour. Technol. 100: 1833–1839.

    Article  CAS  Google Scholar 

  13. Yu, F., D. Zhang, F. Bai, and L. An (2005) The accumulation of isocamptothecin A and B in suspension cell culture of Camptotheca acuminate. Plant Cell, Tiss. Org. Cult. 81: 159–163.

    Article  CAS  Google Scholar 

  14. Jianfeng, X., S. Zhiguo, and F. Pusun (1998) Suspension culture of compact callus aggregate of Rhodiola sachalinensis for improved salidroside production. Enz. Microb. Technol. 23: 20–27.

    Article  CAS  Google Scholar 

  15. Dixon, R. A. (1995) Isolation and maintenance of callus and cell suspension cultures. pp. 1–20. In: Dixon, R. A. (eds.). Plant Cell Culture: A practical approach. IRL press, Washington DC, USA.

    Google Scholar 

  16. Keßler, M., H. J. G. ten Hoopen, and S. Furusaki (1999) The effect of the aggregate size on the production of ajmalicine and tryptamine in Catharanthus roseus suspension culture. Enzy. Microb. Techno. 24: 308–315.

    Article  Google Scholar 

  17. Liu, H. W., C. H. Zhang, X. F. Liu, and Y. X. Wu (2001) Initiation, growth and paclitaxol production of Taxus chinensis cell aggregate suspension cultures. J. Huazhong (Central China) Univ. Sci. Technol. 29 (Suppl. 1): 44–47.

    CAS  Google Scholar 

  18. Edahiro, J. and M. Seki (2006) Phenylpropanoid metabolite supports cell aggregate formation in strawberry cell suspension culture. L. Biosci. Bioeng. 102: 8–13.

    Article  CAS  Google Scholar 

  19. Ping, H. J., H. W. Chang, and T. H. Kwong (1993) Diffusionenhanced bioreactions: A hypothetical mechanism for plant cell aggregation. Bull. Math. Biol. 55: 869–889.

    Article  Google Scholar 

  20. Hulst, A. C., M. M. T. Meyer, H. Breteler, and J. Tramper (1989) Effect of aggregate size in cell cultures of Tagetes patula on thiophene production and cell growth. Appl. Microbial. Biotechnol. 30: 18–25.

    Article  CAS  Google Scholar 

  21. Cheng, X. Y., W. Tao, B. Guo, N. Wen, and L. Chun-Zhao (2005) Cistanche deserticola cell suspension cultures: Phenylethanoid glycosides biosynthesis and antioxidant activity. Proc. Biochem. 40: 3119–3124.

    Article  CAS  Google Scholar 

  22. Doran, P. M. (1993) Plant secondary metabolites- scale up aspects. Adv. Biochem.Biotechnol. 48: 115–168.

    Google Scholar 

  23. Murashige, T. and F. Skoog (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 475–479.

    Google Scholar 

  24. Narayan, M. S., R. Thimmaraju, and N. Bhagyalakshmi (2005) Interplay of growth regulators during solid–state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Proc. Biochem. 40: 351–358.

    Article  CAS  Google Scholar 

  25. Yuan, X., B. Zhao, and Y. Wang (2004) Cell culture of Saussurea medusa in a periodically submerged air-lift bioreactor. Biochem. Eng. J. 21: 235–239.

    Article  CAS  Google Scholar 

  26. Zhao, D., Y. Huang, Z. Jin, W. Qu, and D. Lu (2003) Effect of aggregate size in cell cultures of Saussurea medusa on cell growth and jaceosidin production. Plant Cell Rep. 21: 1129–1133.

    Article  CAS  Google Scholar 

  27. Xu, J. F., P. Q. Yin, and X. G. Wei (1998) Self–immobilized aggregate culture of Taxus cuspidate for improved taxol production. Biotechnol. Tech. 12: 241–244.

    Article  CAS  Google Scholar 

  28. Bais, H. P., T. S. Walker, J. J. Mcgrew, and J. M. Vivanco (2002) Factors affecting growth of cell suspension cultures of Hypericum perforatum L. (St. John’s wort) and production of hypericin. In vitro Cell Dev. Biol- Plant. 38: 58–65.

    Article  CAS  Google Scholar 

  29. Kolewe, M. E., M. A. Henson, and S. C. Roberts. (2011) Analysis of aggregate size as a process variable affecting paclitaxel accumulation in Taxus suspension cultures. Biotechnol. Prog. 27: 1365–1372.

    Article  CAS  Google Scholar 

  30. Bouque, V., F. Bourgaud, C. Nguyen, and A. Guckert (1998) Production of daidzein by callus cultures of Psoralea species and comparison with the plants. Plant Cell Tiss. Org. Cult. 53: 35–40.

    Article  CAS  Google Scholar 

  31. Bourgaud, F., V. Bouque, and A. Guckert (1999) Production of flavonoids by Psoralea hairy root cultures. Plant Cell Tiss. Org. Cult. 56: 97–104.

    Article  CAS  Google Scholar 

  32. Bourgaud, F., C. Nguyen, and A. Guckert (1995) Psoralea species: In vitro culture and production of furanocoumarins and other secondary metabolites. pp 388–411. In: Bajaj Y. P. S. (ed.). Biotechnology in Agriculture and Forestry XXII, Medicinal and Aromatic Plants VIII. Springer, Berlin, Heidelberg.

    Google Scholar 

  33. Lystvan, K., V. Belokurova, Y. Sheludko, J. Ingham, L. V. Prykhodko, O. Kishchenko, E., Paton, and M. Kuchuk (2010) Production of bakuchiol by in vitro systems of Psoralea drupacea Plant Cell Tiss. Org. Cult. 101: 99–103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devanand P. Fulzele.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satdive, R., Shinde, A.N., Singh, S. et al. Aggregate cell suspension cultures of Psoralea corylifolia improved phytoestrogens production. Biotechnol Bioproc E 20, 373–379 (2015). https://doi.org/10.1007/s12257-014-0536-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0536-0

Keywords

Navigation