Skip to main content
Log in

Kinetics study of enzymatic hydrolysis of Paulownia by dilute acid, alkali, and ultrasonic-assisted alkali pretreatments

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Paulownia, a fast-growing and high-fiber plant (cellulose: 41.66% and hemicellulose: 19.61%), has the potential to serve as an interesting source for production of bioethanol. The aim of this paper is to study and compare the kinetics of enzymatic hydrolysis of Paulownia pretreated by dilute acid (DA), alkali (AL) and ultrasonic-assisted alkali (UA). The enzymatic hydrolysis was performed at 50°C, atmospheric pressure with 40 FPU/g-cellulose cellulase and 80 CBU/g-cellulose cellobiase. The hydrolysis process can be successfully described by the Michaelis-Menten model under the three pretreatment conditions. Due to the high removal of lignin and increased porosity of the substrate, UA pretreatment is proved to be the most effective method in improving enzymatic saccharification, followed by DA pretreatment and alkali (AL) pretreatment. Inhibition constant K I of all experiments (DA: 2.16 g/L, AL: 3.12 g/L and UA: 1.83 g/L) suggests that glucose has a strong inhibition for enzymatic hydrolysis, for lower K I is proportional to higher inhibition performance. The experimental date fits well with kinetics model. This indicates that the model is suitable for performance monitoring, conditions optimization and process control at full-scale studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Curreli, N. and M. Agelli (2002) Complete and efficient enzymatic hydrolysis of pretreated wheat straw. Proc. Biochem. 37: 937–941.

    Article  CAS  Google Scholar 

  2. Intanakul, P., M. Krairiksh, and Dr. P. Kitchaiya (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J. Wood Chem. Technol. 23: 217–225.

    Article  Google Scholar 

  3. Phothisantikul, P. P. and R. Tuanpusa (2013) Effect of CH3COOH and K2CO3 on hydrothermal pretreatment of water hyacinth (eichhornia crassipes). I&EC Res. 52: 5009–5015.

    CAS  Google Scholar 

  4. Sambusiti, C., E. Ficara, and F. Malpei (2013) Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 55: 449–456.

    Article  CAS  Google Scholar 

  5. Ayrilmis, N. and A. Kaymakci (2013) Fast growing biomass as reinforcing filler in thermoplastic composites: Paulownia elongata wood. Ind. Crop. Prod. 43: 457–464.

    Article  CAS  Google Scholar 

  6. Cheng, J., Y. Sun, and Y. Chen (2012) Optimization of dilute acid pretreatment of Paulownia for the production of bioethanol by respond surface methodology. Adv. Mat. Res. 2012: 250–553.

    Article  Google Scholar 

  7. Alvira, P., E. Tomás-Pejó, M. Ballesteros, and M. J. Negro (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technol. 101: 4851–4861.

    Article  CAS  Google Scholar 

  8. Kumar, R., G. Mago, V. Balan, and C. E. Wyman (2009) Physical and chemical characterizations of corn stover and poplar solidsresulting from leading pretreatment technologies. Bioresource Technol. 100: 3948–3962.

    Article  CAS  Google Scholar 

  9. Lee, D. H., E. Y. Cho, C.-J. Kim, and S. B. Kim (2010) Pretreatment of waste newspaper using ethylene glycol for bioethanol production. Biotechnol. Bioproc. Eng. 15: 1094–1101.

    Article  CAS  Google Scholar 

  10. Aguiar, R. S., M. H. L. Silveira, and A. P. Pitarelo (2013) Kinetics of enzyme-catalyzed hydrolysis of steam-exploded sugarcane bagasse. Bioresource Technol. 147: 416–423.

    Article  CAS  Google Scholar 

  11. Timothy, D. H. B., M. Ahmad, E. M. Hardiman, and R. Rahmanpour (2011) Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28: 1871–1960.

    Article  Google Scholar 

  12. Timothy, D. H. B., M. Ahmad, E. M. Hardiman, and R. Singh (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotec. 22: 394–400.

    Article  Google Scholar 

  13. Sun, Y. and J. J. Cheng (2005) Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol. 96: 1599–1606.

    Article  CAS  Google Scholar 

  14. Chen, M., J. Zhao, and L. Xia (2009) Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenerg. 33: 1381–1385.

    Article  CAS  Google Scholar 

  15. Grohmann, K., R. Torget, and M. Himmel (1985) Optimization of dilute acid pretreatment of biomass. Biotechnol. Bioeng. Symp. 15: 59–80.

    Google Scholar 

  16. Avci, A., B. C. Saha, G. J. Kennedy, and M. A. Cotta (2013) Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresource Technol. 142: 312–319.

    Article  CAS  Google Scholar 

  17. Hernández, E., A. Garcí, M. Lópe, J. Puls, J. C. Parajó, and C. Martín (2013) Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Moringa oleifera empty pods. Ind. Crop. Prod. 44: 227–231.

    Article  Google Scholar 

  18. Rajan, K. and D. J. Carrier (2014) Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenerg 62: 222–227.

    Article  CAS  Google Scholar 

  19. Azizul Haque, M., D. N. Barman, T. H. Kang, M. K. Kim, J. Kim, H. Kim, and H. D. Yun (2013) Effect of dilute alkali pretreatment on structural features and enhanced enzymatic hydrolysis of Miscanthus sinensis at boiling temperature with low residence time. Biosyst. Eng. 114: 294–305.

    Article  Google Scholar 

  20. Yueshu, G.., J. Xu, Y. Zhang, Q. Yu, Z. Yuan, and Y. Liu (2013) Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Bioresour. Technol. 144: 396–400.

    Article  Google Scholar 

  21. González, López-Santín, Caminal, and Sola (1986) Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: a simplified kinetic model. Biotechnol. Bioeng. 28: 288–293.

    Article  Google Scholar 

  22. Saha, B. C., L. B. Iten, M. A. Cotta, and Y. V. Wu (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol. Prog. 21: 816–822.

    Article  CAS  Google Scholar 

  23. Bezerra, R. M. F. and A. A. Dias (2004) Discrimination among eight modified Michaelis-Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios. Appl. Biochem. Biotechnol. 112: 173–184.

    Article  CAS  Google Scholar 

  24. Lopez, F., M. T. Garcia, M. J. Feria, and J. C. Garcia (2014) Optimization of furfural production by acid hydrolysis of Eucalyptus globulus in two stages. Chem. Eng. J. 204: 195–201.

    Article  Google Scholar 

  25. Wei, G.-Y., Y.-J. Lee, Y. J. Kim, I.-H. Jin, J.-H. Lee, C.-H. Chung, and J.-W. Lee (2010) Kinetic study on the pretreatment and enzymatic saccharification of rice Hull for the production of fermentable sugars. Appl. Biochem. Biotechnol. 162:1471–1482.

    Article  CAS  Google Scholar 

  26. Zhao, X., L. Zhang, and D. Liu (2008) Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Bioresour. Technol. 99: 3729–3736.

    Article  CAS  Google Scholar 

  27. Laine, J. E. and D. A. I. Goring (1977) Influence of ultrasonic irradiation on the properties of cellulosic fibers. Cell Chem. Technol. 11: 561–567.

    CAS  Google Scholar 

  28. Seino, T., A. Yoshioka, M. Fujiwara, K.-L. Chen, T. Erata, M. Tabata, and M. Takai (2001) ESR studies of radicals generated by ultrasonic irradiation of lignin solution. Anapplication of the spin trapping method. Wood Sci. Technol. 35: 97–106.

    Article  CAS  Google Scholar 

  29. Gupta, R. and Y. Y. Lee (2009) Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol. Bioeng. 102: 1570–1581.

    Article  CAS  Google Scholar 

  30. Nazhad, M. M., L. P. Ramos, L. Paszner, and J. N. Saddler (1995) Structural constraints affecting the initial enzymatic-hydrolysis of recycled paper. Enz. Microb. Technol. 17: 68–74.

    Article  CAS  Google Scholar 

  31. Teeri, T. T. (1997) Crystalline cellulose degradation: New insight into the function of cellobiohydrolases. Trends Biotechnol. 15: 160–167.

    Article  Google Scholar 

  32. Ahmad Ziad Sulaiman and Azilah Ajit (2013) Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose. Biotechnol. Prog. 9: 1448–1457.

    Google Scholar 

  33. Carrillo, F., M. J. Lis, X. Colom, M. López-Mesas, and J. Valldeperas (2005) Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: Kinetic study. Proc. Biochem. 40: 3360–3364.

    Article  CAS  Google Scholar 

  34. Carvalho, M. L., R. Sousa Jr, U. F. Rodríguez-Zúñiga Suarez, CAG, Rodrigues, R. C. Giordano, and R. L. C. Gi ordano (2013) Kinetic study of the enzymatic hydrolysis of sugarcane bagasse. Braz. J. Chem. Eng. 30: 437–447.

    Article  CAS  Google Scholar 

  35. Toquero, C. and S. Bolado (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour. Technol. 157: 68–76.

    Article  CAS  Google Scholar 

  36. Andri, P., A. S. Mayer, P. A. Jensen, and Dam-Johansen (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol. Adv. 28: 308–324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuancai Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Xk., Chen, Y. Kinetics study of enzymatic hydrolysis of Paulownia by dilute acid, alkali, and ultrasonic-assisted alkali pretreatments. Biotechnol Bioproc E 20, 242–248 (2015). https://doi.org/10.1007/s12257-014-0490-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0490-x

Keywords

Navigation