Skip to main content
Log in

Combination of 1,4-naphthoquinone with benzothiazoles had selective algicidal effects against harmful algae

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A series of naphthoquinone-benzothiazole conjugates were synthesized as algicides, and their efficacies against harmful algal blooming species, such as Chattonella marina, Heterosigma akashiwo and Cochlodinium polykrikoides, were examined. The introduction of substituted benzothiazole at the C2 position of 1,4-naphthoquinone (compounds 19) resulted in higher algicidal activity against C. polykrikoides than the C6 conjugates (compounds 1020). On the other hand, of the C6 conjugates, compounds 11 and 12 exhibited better algicidal activity against H. akashiwo, C. marina, and C. polykrikoides than the C2 conjugates. Further structure-activity analysis indicated that a replacement of the methoxy groups with hydroxyl groups (compounds 2126) decreased the algicidal activity significantly. Among the various synthetic naphthoquinonebezothiazole conjugates tested, compound 12 was found to affect the most significant decrease in the level of C. polykrikoides growth, with an IC50 of 0.19 μM. Compound 11 was found to be the most potent inhibitor against H. akashiwo and C. polykrikoides, with IC50 values of 0.32 and 0.12 μM, respectively. Overall, these results highlight a possible method for controlling and inhibiting red tide forming algae using NQ derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glibert, P. M., D. M. Anderson, P. Gentien, E. Graneli, and K. G. Sellner (2005) The global, complex phenomena of harmful algal blooms. Oceanography 18: 136–147.

    Article  Google Scholar 

  2. Horner, R. A., D. L. Garrison, and F. G. Plumley (1997) Harmful algal blooms and red tide problems on the U. S. west coast. Limnol. Oceanogr. 42: 1076–1088.

    Article  Google Scholar 

  3. Lee, M. O. and J. K. Kim (2008) Characteristics of algal blooms in the southern coastal waters of Korea. Mar. Environ. Res. 65: 128–147.

    Article  CAS  Google Scholar 

  4. Stoecker, D. K., J. E. Adolf, A. R. Place, P. M. Glibert, and D. W. Meritt (2008) Effects of the dinoflagellates Karlodinium veneficum and Prorocentrum minimum on early life history stages of the eastern oyster (Crassostrea virginica). Mar. Biol. 154: 81–90.

    Article  Google Scholar 

  5. Yoshinaga, I., T. Kawai, and Y. Ishida (1997) Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref., Japan. Fish Sci. 63: 94–98.

    CAS  Google Scholar 

  6. Zingone, A. and H. O. Enevoldsen (2000) The diversity of harmful algal blooms: A challenge for science and management. Ocean Coast. Manag. 43: 725–748.

    Article  Google Scholar 

  7. Landsberg, J. H. (2002) The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 10: 113–390.

    Article  Google Scholar 

  8. Sridhar, P., C. Namasivayam, and G. Prabhakaran (1988) Algae flocculation in reservoir water. Biotechnol. Bioeng. 32: 345–347.

    Article  CAS  Google Scholar 

  9. Tenney, M. W., W. F. Echelberger, R. G. Schuessler, and J. L. Pavoni (1969) Algal flocculation with synthetic organic polyelectrolytes. Appl. Microbiol. 18: 965–971.

    CAS  Google Scholar 

  10. Sengco, M. R. and D. M. Anderson (2004) Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51: 169–172.

    Article  CAS  Google Scholar 

  11. Shirota, A. (1989) Red tide problem and countermeasures (2). Int. J. Aquat. Fish. Technol. 1: 195–223.

    Google Scholar 

  12. Anderson, D. M. (1997) Turning back the harmful red tide. Nature 388: 513–514.

    Article  CAS  Google Scholar 

  13. Sengco, M. R., A. Li, K. Tugend, D. Kulis, and D. M. Anderson (2001) Removal of red and brown tide cells using clay flocculation: I Laboratory culture experiments with Gymnodinum breve and Aureococcus anophagefferens. Mar. Ecol. Prog. Ser. 210: 41–53.

    Article  CAS  Google Scholar 

  14. Kim, Y. M., Y. Wu, T. U. Duong, G. S. Ghodake, S. W. Kim, E. S. Jin, and H. Cho (2010) Thiazolidinediones as a novel class of algicides against red tide harmful algal species. Appl. Biochem. Biotechnol. 162: 2273–2283.

    Article  CAS  Google Scholar 

  15. Kang, Y. H., J. D. Kim, B. H. Kim, D. S. Kong, and M. S. Han (2005) Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii. J. Appl. Microbiol. 98: 1030–1038.

    Article  CAS  Google Scholar 

  16. Su, J. Q., X. R. Yang, T. L. Zheng, Y. Tian, N. Z. Jiao, L. Z. Cai, and H. S. Hong (2007) Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6: 799–810.

    Article  CAS  Google Scholar 

  17. Wang, K. and F. Chen (2008) Prevalence of highly host-specific cyanophages in the estuarine environment. Environ. Microbiol. 10: 300–312.

    Article  CAS  Google Scholar 

  18. Kim, Y. M., Y. Wu, T. U. Duong, S. G. Jung, S. W. Kim, H. Cho, and E. S. Jin (2012) Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. Mar. Biotechnol. 14: 312–322.

    Article  CAS  Google Scholar 

  19. Tucker, C. S. (2000) Off-flavor problems in aquaculture. Rev. Fish. Sci. 8:45–88.

    Article  CAS  Google Scholar 

  20. Schrader, K. K., N. P. Nanayakkara, C. S. Tucker, A. M. Rimando, M. Ganzera, and B. T. Schaneberg (2003) Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Appl. Environ. Microb. 69: 5319–5327.

    Article  CAS  Google Scholar 

  21. Tewey, K. M., G. L. Chen, E. M. Nelson, and L. F. Liu (1984) Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J. Biol. Chem. 259: 9182–9187.

    CAS  Google Scholar 

  22. Leopold, W. R., J. L. Shillis, A. E. Mertus, J. M. Nelson, B. J. Roberts, and R. C. Jackson (1984) Anticancer activity of the structurally novel antibiotic Cl-920 and its analogues. Cancer Res. 44: 1928–1932.

    CAS  Google Scholar 

  23. Scheithauer, W., D. D. Von Hoff, G. M. Clark, J. L. Shillis, and E. F. Elslager (1986) In vitro activity of the novel antitumor antibiotic fostriecin (CI-920) in a human tumor cloning assay. Eur. J. Cancer Clin. Oncol. 22: 921–926.

    Article  CAS  Google Scholar 

  24. Ting, C. Y., C. T. Hsu, J. S. Su, T. Y. Chen, W. Y. Tarn, Y. H. Kuo, J. Whang-Peng, L. F. Liu, and J. Hwang (2003) Isodiospyrin as a novel human DNA topoisomerase I inhibitor. Biochem. Pharmacol. 66: 1981–1991.

    Article  CAS  Google Scholar 

  25. Chae, G. H., G. Y. Song, Y. Kim, H. Cho, E. E. Sok, and B. Z. Ahn (1999) 2- or 6-(1-Azidoalkyl)-5,8-dimethoxy-1,4-naphthoquinone: Synthesis, evaluation of cytotoxic activity, antitumor activity and inhibitory effect on DNA topoisomerase-I. Arch. Pharm. Res. 22: 507–514.

    Article  CAS  Google Scholar 

  26. Song, G. Y., X. G. Zheng, Y. Kim, Y. J. You, D. E. Sok, and B. Z. Ahn (1999) Naphthazarin derivatives (II): Formation of glutathione conjugate, inhibition of DNA topoisomerase-I and cytotoxicity. Bioorg. Med. Chem. Lett. 9: 2407–2412.

    Article  CAS  Google Scholar 

  27. Song, G. Y., Y. Kim, Y. J. You, H. Cho, S. H. Kim, D. E. Sok, and B. Z. Ahn (2000) Naphthazarin derivatives (VI): Synthesis, inhibitory effect on DNA topoisomerase-I and antiproliferative activity of 2- or 6-(1-oxyiminoalkyl)-5,8-dimethoxy-1,4-naphthoquinones. Arch. Pharm. Pharm. Med. Chem. 333: 87–92.

    Article  CAS  Google Scholar 

  28. Song, G. Y., Y. Kim, X. G. Zheng, Y. J. You, H. Cho, J. H. Chung, D. E. Sok, and B. Z. Ahn (2000) Naphthazarin derivatives (IV): Synthesis, inhibition of DNA topoisomerase I and cytotoxicity of 2- or 6-acyl-5,8-dimethoxy-1, 4-naphthoquinones. Eur. J. Med. Chem. 35: 291–298.

    Article  CAS  Google Scholar 

  29. Kim, Y., Y. J. You, and B. Z. Ahn (2001) Naphthazarin derivatives (VIII): Synthesis, inhibitory effect on DNA topoisomerase-I, and antiproliferative activity of 6-(1-acyloxyalkyl)-5,8-dimethoxy-1,4-naphthoquinones. Arch. Pharm. Pharm. Med. Chem. 334: 318–322.

    Article  CAS  Google Scholar 

  30. Lown, J. W., S. K. Sim, K. C. Majumdar, and R. Y. Chang (1977) Strand scission of DNA by bound adriamycin and daunorubicin in the presence of reducing agents. Biochem. Biophys. Res. Commun. 76: 705–710.

    Article  CAS  Google Scholar 

  31. Hertzberg, R. P. and P. B. Dervan (1984) Cleavage of DNA with methidiumpropyl-EDTA-iron(II): Reaction conditions and product analyses. Biochem. 23: 3934–3945.

    Article  CAS  Google Scholar 

  32. Silverman, R. B. (1992) The Organic Chemistry of Drug Design and Drug Action. pp. 255–258. Academic Press, NY.

    Google Scholar 

  33. Inbaraj, J. J. and C. F. Chignell (2004) Cytotoxic action of juglone and plumbagin: A mechanistic study using HaCaT keratinocytes. Chem. Res. Toxicol. 17: 55–62.

    Article  CAS  Google Scholar 

  34. Huang, S. T., H. S. Kuo, C. L. Hsiao, and Y. L. Lin (2002) Efficient synthesis of’ redox-switched’ naphthoquinone thiol-crown ethers and their biological activity evaluation. Bioorg. Med. Chem. 10: 1947–1952.

    Article  CAS  Google Scholar 

  35. Tandon, V. K., R. B. Chhor, R. V. Singh, S. Rai, and D. B. Yadav (2004) Design, synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antifungal and anticancer agents. Bioorg. Med. Chem. Lett. 14: 1079–1083.

    Article  CAS  Google Scholar 

  36. Sasaki, K., H. Abe, and F. Yoshizaki (2002) In vitro antifungal activity of naphthoquinone derivatives. Biol. Pharm. Bull. 25: 669–670.

    Article  CAS  Google Scholar 

  37. Lien, J. C., L. J. Huang, C. M. Teng, J. P. Wang, and S. C. Kuo (2002) Synthesis of 2-alkoxy 1,4-naphthoquinone derivatives as antiplatelet, antiinflammatory, and antiallergic agents. Chem. Pharm. Bull. 50: 672–674.

    Article  CAS  Google Scholar 

  38. Jin, Y. R., C. K. Ryu, C. K. Moon, M. R. Cho, and Y. P. Yun (2004) Inhibitory effects of J78, a newly synthesized 1,4-naphthoquinone derivative, on experimental thrombosis and platelet aggregation. Pharmacol. 70: 195–200.

    Article  CAS  Google Scholar 

  39. Kim, H. J., S. K. Kang, J. Y. Mun, Y. J. Chun, K. H. Choi, and M. Y. Kim (2003) Involvement of Akt in mitochondria-dependent apoptosis induced by a cdc25 phosphatase inhibitor naphthoquinone analog. FEBS Lett. 555: 217–222.

    Article  CAS  Google Scholar 

  40. Richwien, A. and G. Wurm (2004) Influence of 2-aryl-3-halogen/3-hydroxy-1,4-naphthoquinones with salicylic and cinnamic acid partial structures on the arachidonic acid cascade. Pharmazie 59: 163–169.

    CAS  Google Scholar 

  41. Wurm, G. and S. Schwandt (2003) Methylated 2-aryl-1,4-naphtoquinone derivatives with diminished antioxidative activity. Pharmazie 58: 531–538.

    CAS  Google Scholar 

  42. Lanfranchi, D. A., E. Cesar-Rodo, B. Bertrand, H. H. Huang, L. Day, L. Johann, M. Elhabiri, K. Becker, D. L. Williams, and E. Davioud-Charvet (2012) Synthesis and biological evaluation of 1,4-naphthoquinones and quinoline-5,8-diones as antimalarial and schistosomicidal agents. Org. Biomol. Chem. 10: 6375–6387.

    Article  CAS  Google Scholar 

  43. Sato, H., R. Yamada, M. Yanagihara, H. Okuzawa, H. Iwata, A. Kurosawa, S. Ichinomiya, R. Suzuki, H. Okabe, T. Yano, T. Kumamoto, N. Suzuki, T. Ishikawa, and K. Ueno (2012) New 2-aryl-1,4-naphthoquinone-1-oxime methyl ether compound induces microtubule depolymerization and subsequent apoptosis. J. Pharmacol. Sci. 118: 467–478.

    Article  CAS  Google Scholar 

  44. Kuo, H. L., J. C. Lien, C. H. Chang, C. H. Chung, S. C. Kuo, C. C. Hsu, H. C. Peng, and T. F. Huang (2011) NP-313, 2-acetylamino-3-chloro-1,4-naphthoquinone, a novel antithrombotic agent with dual inhibition of thromboxane A(2) synthesis and calcium entry. Br. J. Pharmacol. 62: 1871–1883.

    Article  Google Scholar 

  45. Havrylyuk, D., L. Mosula, B. Zimenkovsky, O. Vasylenko, A. Gzella, and R. Lesyk (2010) Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem. 45: 5012–5021.

    Article  CAS  Google Scholar 

  46. Gilani, S. J., S. A. Khan, N. Siddiqui, S. P. Verma, P. Mullick, and O. Alam (2011) Synthesis and in vitro antimicrobial activity of novel N-(6-chlorobenzo[d]thiazol-2-yl) hydrazine carboxamide derivatives of benzothiazole class. J. Enz. Inhib. Med. Chem. 26: 332–340.

    Article  CAS  Google Scholar 

  47. Jin, G. H., H. Li, S. An, J. H. Ryu, and R. Jeon (2010) Design, synthesis and activity of benzothiazole-based inhibitors of NO production in LPS-activated macrophages. Bioorg. Med. Chem. Lett. 20: 6199–6202.

    Article  CAS  Google Scholar 

  48. Viegas-Junior, C., A. Danuello, V. da Silva Bolzani, E. J. Barreiro, and C. A. Fraga (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Cur. Med. Chem. 14: 1829–1852.

    Article  CAS  Google Scholar 

  49. Chung, Y., Y. K. Shin, C. G. Zhan, S. Lee, and H. Cho (2004) Synthesis and evaluation of antitumor activity of 2- and 6-[(1,3-benzothiazol-2-yl)aminomethyl]-5,8-dimethoxy-1,4-naphthoquoinone derivatives. Arch. Pharm. Res. 27: 893–900.

    Article  CAS  Google Scholar 

  50. Kim, B. H., J. Yoo, S. H. Park, J. K. Jung, Y. Chung, and H. Cho (2006) Synthesis and evaluation of antitumor activity of novel 1,4-naphthoquinone derivatives (IV). Arch. Pharm. Res. 29: 123–130.

    Article  CAS  Google Scholar 

  51. Chung, Y., J. Yoo, S. H. Park, B. H. Kim, X. Chen, C. G. Zhan, and H. Cho (2007) Dependence of antitumor activity on the electrophilicity of 2-substituted 1,4-naphthoquinone derivatives. Bull. Kor. Chem. Soc. 28: 691–694.

    Article  CAS  Google Scholar 

  52. Yoo, J., H. S. Choi, C. H. Choi, Y. Chung, B. H. Kim, and H. Cho (2008) Synthesis and evaluation of antitumor activity of novel 2-[N-methyl-N-(4-methyl-1,3-benzothiazol-2-yl)aminomethyl]-5,8-diacyloxy-1,4-naphthoquinones. Arch. Pharm. Res. 31: 142–147.

    Article  CAS  Google Scholar 

  53. Benthey, W. H., R. Robinson, and C. Weizmann (1907) 3-Hydroxyphthalic and 3-methoxyphthalic acids and their derivatives. J. Chem. Soc. 91: 104–112.

    Article  Google Scholar 

  54. Carter, A. H., E. Race, and F. M. Rowe (1942) Bromination of 1,5-dihydroxy- and 1,5-diacetoxynaphthalene, 5-methoxy-1-naphthol and 1,5-dimethoxynaphthalene. J. Chem. Soc. 236–239.

    Google Scholar 

  55. O’Brien, P. J. (1991) Molecular mechanisms of quinine cytotoxicity. Chem. Biol. Interact. 80: 1–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eon Seon Jin or Hoon Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, H.L., Kim, JH., Na, D.H. et al. Combination of 1,4-naphthoquinone with benzothiazoles had selective algicidal effects against harmful algae. Biotechnol Bioproc E 18, 932–941 (2013). https://doi.org/10.1007/s12257-013-0284-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0284-6

Keywords

Navigation