Skip to main content
Log in

Bufferless lysis of erythrocytes for isolation of hemoglobin using modified cellulose acetate membranes

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This paper presents a modified cellulose acetate membrane prepared using a dry casting technique that can be used to perform lysis of erythrocytes and isolation of hemoglobin. Isolation of hemoglobin is thus achieved without the use of lysis buffers. Cellulose acetate (CA) membranes are embedded with ammonium chloride (NH4Cl) and potassium bicarbonate (KHCO3), which act as lysing agents. The presence of embedded salts is confirmed using EDS analysis. The pores in the CA membrane act as filters. The average pore size in these membranes is designed to be 1.5 μM, as characterized by SEM analysis, so that they allow hemoglobin to pass through and block all other cells and unlysed erythrocytes present in blood. When a drop of blood is added to the membrane, the NH4Cl and KHCO3 embedded in the membrane dissolve in plasma and lyse the erythrocytes. The filtered hemoglobin is characterized using UV-Vis Spectroscopy. The results indicate extraction of higher concentration of hemoglobin compared with conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandalia, H. B. and P. R. Krishnaswamy (2002) Glycated Hemoglobin. Curr. Sci. 83: 1522–1532.

    CAS  Google Scholar 

  2. A1cnow, point-of-care device for HbA1c measurement. www.a1cnow.com.

  3. Sethu, P., L. L. Moldawer, R. G. Tompkins, and M. Toner (2008) Continuous flow microfluidic device for rapid erythrocyte lysis. Anal. Chem 76: 6247–6253.

    Article  Google Scholar 

  4. Xing, C., C. Dafu, L. Changchun, and C. Haoyuan (2006) Microfluidic biochip for blood cell lysis. Chin. J. Anal. Chem. 34: 1656–1660.

    Article  Google Scholar 

  5. Noda, T., H. Takao, K. Yoshioka, N. Oku, M. Ashiki, K. Sawada, K. Matsumoto, and M. Ishida (2006) Performance of absorption photometry microchip for blood hemoglobin measurement integrated with processing circuits and Si(1 1 0) 45° mirrors. Sens. Actuat. B 119: 245–250.

    Article  Google Scholar 

  6. Chernyshev, A. V., P. A. Tarasov, K. A. Semianov, V. M. Nekrasov, A. G. Hoekstra, and V. P. Maltsev (2008) Erythrocyte lysis in isotonic solution of ammonium chloride: Theoretical modeling and experimental verification. J. Theor. Biol. 251: 93–107.

    Article  CAS  Google Scholar 

  7. Mandal, A. K., S. Bisht, V. S. Bhat, P. R Krishnaswamy, and P. Balaram (2008) Electrospray mass spectrometric characterization of hemoglobin Q (Hb Q-India) and a double mutant hemoglobin S/D in clinical samples. Clin. Biochem. 41: 75–81.

    Article  CAS  Google Scholar 

  8. Baker, R. W. (2004) Membrane Technology and applications. 2nd ed., John Wiley and Sons Ltd.

  9. Altinkaya, S. and B. Ozbas (2004) Modeling of asymmetric membrane formation by dry-casting method. J. Membrane Sci. 230: 71–89.

    Article  CAS  Google Scholar 

  10. Cencič, A., S. Koren, B. Filipič, and Č. Stropnik (1998) Porcine blood cell separation by porous cellulose acetate membranes. Cytotechnol. 26: 165–171.

    Article  Google Scholar 

  11. Wara, N., L. Francis, and B. Velamakanni (1995) Addition of alumina to cellulose acetate membranes. J. Membrane Sci. 104: 43–49.

    Article  CAS  Google Scholar 

  12. Arthanareeswaran, G. and P. Thanikaivelan (2010) Fabrication of cellulose acetate-zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis. Sep. Purif. Technol. 74: 230–235.

    Article  CAS  Google Scholar 

  13. Vivid plasma separation membrane, Membranes for isolating plasma. www.pall.com/life_sciences_oem_46962.asp.

  14. McCabe, E. R. B., S. Z. Huang, W. K. Seltzer, and M. L. Law (1987) DNA microextraction from dried blood spots on filter paper blotters: Potential applications to new born screening. Hum. Genet. 75: 213–216.

    Article  CAS  Google Scholar 

  15. McCabe, E. D. R. (1987) Utility of PCR for DNA analysis from dried blood spots on Filter paper blotters. Genome Res. 1: 99–106.

    Article  Google Scholar 

  16. FTA Nucleic Acid Collection, Storage and Purification, FTA cards for DNA isolation. http://www.whatman.com/FTANucleicAcidCollectionStorageandPurification.aspx.

  17. Widmaier, E. P., H. R. Affand, K. T. Strang, and A. J. Vander (2008) Human physiology: The mechanisms of body function. 8th ed., Mcgraw Hill, USA.

    Google Scholar 

  18. Altinkaya, S., H. Yenal, and B. Ozbas (2005) Membrane formation by dry-cast process: Model validation through morphological studies. J. Membrane Sci. 249: 163–172.

    Article  CAS  Google Scholar 

  19. Jacobs, M. H. and D. R. Stewart (1942) The role of carbonic anhydrase in certain ionic exchanges involving the erythrocyte. J. Gen. Physiol. 25: 539–552.

    Article  CAS  Google Scholar 

  20. Mattley, Y., G. Leparc, R. Potter, and L. Garcia-Rubio (2000) Light Scattering and absorption model for the quantitative interpretation of human blood platelet spectral data. Photochem. Photobiol. 71: 610–619.

    Article  CAS  Google Scholar 

  21. Calculation of the molecular extinction coefficient for Hb and HBO2 between 650 and 450nm. Documenta Ophthalmol. 38: 344–347.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siva Rama Krishna Vanjari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanjari, S.R.K., Deepthi, I., Sandeep, K. et al. Bufferless lysis of erythrocytes for isolation of hemoglobin using modified cellulose acetate membranes. Biotechnol Bioproc E 17, 309–315 (2012). https://doi.org/10.1007/s12257-011-0452-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0452-5

Keywords

Navigation