Skip to main content
Log in

Effect of culture medium on hydrogen production by sulfur-deprived marine green algae Platymonas subcordiformis

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

To study the effect of culture medium on hydrogen production by the marine green algae, Platymonas subcordiformis under sulfur deprivation, cell growth, hydrogen production, and starch and protein catabolism was investigated in the work. Algae cells cultured only in optimized medium required 6∼8 days to reach the late logarithmic at the approximate density of (2.00 ± 0.18) × 106 cells/mL, which in traditional medium needed 18∼22 days to reach (1.85 ± 0.20) × 106 cells/mL. Increased levels of Chlorophyll (10.74 ± 0.20 μg/mL), starch (149.50 ± 6.15 μg/mL), and protein (213.00 ± 7.36 μg/mL) were accumulated in optimized medium, which were 1.06, 1.47, and 1.87-fold of the algae cells cultured in traditional medium, respectively. The sealed culture of algae cells in sulfur-deprived optimized medium shifted to anaerobic conditions after 96 h of light illumination and produced 0.45 ± 0.12 mL H2, but in traditional medium maintained aerobic condition and no hydrogen was produced. In addition, changes in starch and protein content during continuous light illumination indicated that more endogenous substrate was consumed in the sulfur-deprived optimized medium than that in the sulfur-deprived traditional medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaffron, H. (1939) Reduction of CO2 with H2 in green algae. Nature 143: 204–205.

    Article  CAS  Google Scholar 

  2. Gaffron, H. and J. Rubin (1942) Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol. 26: 219–240.

    Article  CAS  Google Scholar 

  3. Wykoff, D. D., J. P. Davies, A. Melis, and A. R. Grossman (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii1. Plant Physiol. 117: 129–139.

    Article  CAS  Google Scholar 

  4. Melis, A., L. P. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii1. Plant Physiol. 122: 127–136.

    Article  CAS  Google Scholar 

  5. Ghirardi, M. L., L. P. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, and A. Melis (2000) Microalgae: a green source of renewable H2. Trends Biotechnol. 18: 506–511.

    Article  CAS  Google Scholar 

  6. Zhang, L. P., T. Happe, and A. Melis (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214: 552–561.

    Article  CAS  Google Scholar 

  7. Kaltwasser, H., T. S. Stuart, and H. Gaffron (1969) Light-dependent hydrogen evolution by Scenedesmus. Planta 89: 309–322.

    Article  CAS  Google Scholar 

  8. Melis, A. and T. Happe (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol. 127: 740–748.

    Article  CAS  Google Scholar 

  9. Ran, C. Q., X. J. Yu, M. F. Jin, and W. Zhang (2006) Role of carbonyl cyanide m-chlorophenylhydrazone in enhancing photobiological hydrogen production by marine green alga Platymonas subcordiformis. Biotechnol. Prog. 22: 438–443.

    Article  CAS  Google Scholar 

  10. Ran, C. Q., W. Zhang, X. J. Yu, M. F. Jin, and M. C. Deng (2006) Regulation of hydrogen production by uncoupler CCCP in green algae Chlamydomonas reinhardtii. Chem. J. Chinese Univer. 27: 62–66.

    CAS  Google Scholar 

  11. Ghirardi, M. L., S. Kosourov, A. Tsygankov, and M. Seibert (2000) Two-phase photobiological algal H2-production system. Proceedings of the 2000 DOE Hydrogen Program Review. May 9–11. San Ramon, CA, USA.

  12. Antal, T. K., T. E. Krendeleva, T. V. Laurinavichene, V. V. Makarova, A. A. Tsygankov, M. Seibert, and A. B. Rubin (2001) The relationship between the photosystem 2 activity and hydrogen production in sulfur deprived Chlamydomonas reinhardtii cells. Dokl. Biochem. Biophys. 381: 371–374.

    Article  CAS  Google Scholar 

  13. Kosourov, S., M. Seibert, and M. L. Ghirardi (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol. 44: 146–155.

    Article  CAS  Google Scholar 

  14. Skjånes, K., G. Knutsen, T. Källqvist, and P. Lindblad (2008) H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design. Int. J. Hydrogen Energy 32: 511–521.

    Article  Google Scholar 

  15. Winkler, M., A. Hemschemeier, C. Gotor, A. Melis, and T. Happe (2002) [Fe]-Hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int. J. Hydrogen Energy 27: 1431–1439.

    Article  CAS  Google Scholar 

  16. Guo, Z., Z. A. Chen, W. Zhang, X. J. Yu, and M. F. Jin (2008) Improved hydrogen photoproduction regulated by carbonylcyanide m-chlorophenylhrazone from marine green alga Platymonas subcordiformis grown in CO2-supplemented air bubble column bioreactor. Biotechnol. Lett. 30: 877–883.

    Article  CAS  Google Scholar 

  17. Guan, Y. F., W. Zhang, M. C. Deng, M. F. Jin, and X. J. Yu (2004) Significant enhancement of photobiological H2 evolution by carbonylcyanide m-chlorophenylhydrazone in the marine green alga Platymonas subcordiformis. Biotechnol. Lett. 26: 1031–1035.

    Article  CAS  Google Scholar 

  18. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  Google Scholar 

  19. Gfeller, R. P. and M. Gibbs (1984) Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of fermentative products from starch in dark and light. Plant Physiol. 75: 212–218.

    Article  CAS  Google Scholar 

  20. Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol. 24: 1–15.

    Article  CAS  Google Scholar 

  21. Ran, C. Q. (2006) Comparative characterization of photobiological hydrogen production between marine and freshwater green algae. Ph.D. Thesis. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.

    Google Scholar 

  22. Chen, F. and Y. Jiang (1999) Microalgae Biotechnology. pp. 254–259. China light industry Publishers, Beijing, China.

    Google Scholar 

  23. Borowitzka, M. A. and L. J. Borowitzka (1988) Dunaliella. In: M. A. Borowitzka and L. J. Borowitzka (eds.). Microalgal Biotechnology. Cambridge University Press, Cambridge, London, UK.

    Google Scholar 

  24. Zhan jian Fisheries College (1980) Marine Bait Bioculture. China Agriculture Publisher, Beijing, China.

    Google Scholar 

  25. Happe, T., A. Hemschemeier, M. Winkler, and A. Kaminski (2002) Hydrogenases in green algae: do they save the algae’s life and solve our energy problems? Trends Plant Sci. 7: 246–250.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunqiu Ran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ran, C., Zhang, F., Sun, H. et al. Effect of culture medium on hydrogen production by sulfur-deprived marine green algae Platymonas subcordiformis . Biotechnol Bioproc E 14, 835–841 (2009). https://doi.org/10.1007/s12257-008-0287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0287-x

Keywords

Navigation