Skip to main content

Advertisement

Log in

Prevention and treatment of KSHV-associated diseases with antiviral drugs

  • Published:
Virologica Sinica

Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV) was first identified as the etiologic agent of Kaposi’s sarcoma (KS) in 1994. KSHV infection is necessary, but not sufficient for the development of Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). Advances in the prevention and treatment of KSHV-associated Diseases have been achieved, even though current treatment options are ineffective, or toxic to many affected persons. The identification of new targets for potential future therapies and the randomized trial to evaluate the efficacy of new antivirals are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaron L, Lidove O, Yousry C,et al. 2002. Human herpesvirus 8-positive Castleman disease in human immunodeficiency virus-infected patients: the impact of highly active antiretroviral therapy. Clin Infect Dis, 35: 880–882.

    Article  PubMed  Google Scholar 

  2. Abele G, Cox S, Bergman L,et al. 1991. Antiviral activity against VZV and HSV type 1 and type 2 of the (+) and (−) enantiomers of (R,S)-9-[4-hydroxy-2-(hydroxymethyl) butyl] guanine, in comparison to other closely related acyclic nucleosides. Antiviral Chem Chemother, 2: 163–169.

    CAS  Google Scholar 

  3. Alagiozoglou L, Morris L, Bredell H,et al. 2003. Human herpesvirus-8 antibodies and DNA in HIV-1 infected patients in South Africa. Epidemiol Infect, 131: 1125–1129.

    Article  PubMed  CAS  Google Scholar 

  4. Bahl S, Theis B, Nishri D,et al. 2008. Changing incidence of AIDS-related Kaposi sarcoma and non-Hodgkin lymphoma in Ontario, Canada. Cancer Causes Control, http://www.springerlink.com/content/y1423n681-4037804/fulltext.pdf

  5. Bani-Sadr F, Fournier S, Molina J M. 2003. Relapse ofKaposi’s sarcoma inHIV-infected patients switching fromaprotease inhibitor toanon-nucleoside reverse transcriptase inhibitor-based highly active antiretroviral therapy regimen. AIDS, 17:1580–1581.

    Article  PubMed  Google Scholar 

  6. Barillari G, Buonaguro L, Fiorelli V,et al. 1992. Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression: implications for AIDS-Kaposi’s sarcoma pathogenesis. J Immunol, 149: 3727–3734.

    PubMed  CAS  Google Scholar 

  7. Beral V. 1991. Epidemiology of Kaposi’s sarcoma. Cancer Surv, 10: 5–22.

    PubMed  CAS  Google Scholar 

  8. Berezne A, Agbalika F, Oksenhendler E,et al. 2004. Failure of cidofovir in HIV-associated multicentric Castleman disease. Blood, 103: 4368–4369.

    Article  PubMed  CAS  Google Scholar 

  9. Biggar R J, Whitby D, Marshall V,et al. 2000. Human herpesvirus 8 in Brazilian Amerindians: a hyperendemic population with a new subtype. J Infect Dis, 181: 1562–1568.

    Article  PubMed  CAS  Google Scholar 

  10. Bottieau E, Colebunders R, Schroyens W,et al. 2000. Multicentric Castleman’s disease in 2 patients with HIV infection, unresponsive to antiviral therapy. Acta Clin Belg, 55: 97–101.

    PubMed  CAS  Google Scholar 

  11. Bower M, Fox P, Fife K,et al. 1999. Highly active anti-retroviral therapy (HAART) prolongs time to treatment failure in Kaposi’s sarcoma. AIDS, 13: 2105–2111.

    Article  PubMed  CAS  Google Scholar 

  12. Casper C, Nichols W G, Huang M L,et al. 2004. Remission of HHV-8 and HIV-associated multicentric Castleman disease with ganciclovir treatment. Blood, 103: 1632–1634.

    Article  PubMed  CAS  Google Scholar 

  13. Cattelan A, Calabro M, Gasperini P,et al. 2001. Acquired immunodeficiency syndrome-related Kaposi’s sarcoma regression after highly active antiretroviral therapy: biologic correlates of clinical outcome. J Natl Cancer Inst Monogr, 28: 44–49.

    PubMed  Google Scholar 

  14. Chang Y, Cesarman E, Pessin M S,et al. 1994. Identification of herpesvirus-like sequences in AIDS-associated Kaposi’s sarcoma. Science, 266: 1865–1869.

    Article  PubMed  CAS  Google Scholar 

  15. Clifford G M, Polesel J, Rickenbach M,et al. 2005. Cancer Risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst, 97: 425–432

    Article  PubMed  Google Scholar 

  16. Crum-Cianflone N F, Wallace M R, Looney D. 2006. Successful secondary prophylaxis for primary effusion lymphoma with human herpesvirus 8 therapy. AIDS, 20: 1567–1569.

    Article  PubMed  Google Scholar 

  17. Dilnur P, Katano H, Wang Z H,et al. 2001. Classic type of Kaposi’s sarcoma and human herpesvirus 8 infection in Xinjiang, China. Pathol Int, 51: 845–852.

    Article  PubMed  CAS  Google Scholar 

  18. Diz Dios P, Ocampo Hermida A, Miralles Alvarez C,et al. 1998. Regression of AIDS-related Kaposi’s sarcoma following ritonavir therapy. Oral Oncol, 34: 236–238.

    Article  PubMed  CAS  Google Scholar 

  19. Dukers N H, Rezza G. 2003. Human herpesvirus 8 epidemiology: what we do and do not know. AIDS, 17: 1717–1730.

    Article  PubMed  Google Scholar 

  20. Eltom M A, Jemal A, Mbulaiteye S M,et al. 2002. Trends in Kaposi’s sarcoma and non-Hodgkin’s lymphoma incidence in the United States from 1973 through 1998. J Natl Cancer Inst, 94: 1204–1210.

    PubMed  Google Scholar 

  21. Ensoli B, Barillari G, Salahuddin S Z, et al.1990. Tat protein of HIV-1 stimulates growth of AIDS-Kaposi’s sarcoma-derived cells. Nature, 345: 84–86.

    Article  PubMed  CAS  Google Scholar 

  22. Franceschi S, Maso L D, Rickenbach M,et al. 2008. Kaposi sarcoma incidence in the Swiss HIV Cohort Study before and after highly active antiretroviral therapy. Br J Cancer, 99: 800–804.

    Article  PubMed  CAS  Google Scholar 

  23. Glesby M J, Hoover D R, Weng S,et al. 1996. Use of antiherpes drugs and the risk of Kaposi’s sarcoma: data from the Multicenter AIDS Cohort Study. J Infect Dis, 173: 1477–1480.

    PubMed  CAS  Google Scholar 

  24. Grandadam M, Dupin N, Calvez V,et al. 1997. Exacerbations of clinical symptoms in human immunodeficiency virus type 1-infected patients with multicentric Castleman’s disease are associated with a high increase in Kaposi’s sarcoma herpesvirus DNA load in peripheral blood mononuclear cells. J Infect Dis, 175: 1198–1201.

    Article  PubMed  CAS  Google Scholar 

  25. Grundhoff A, Ganem D. 2004. Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest, 113: 124–136.

    PubMed  CAS  Google Scholar 

  26. Gustafson E A, Schinazi R F, Fingeroth J D. 2000. Human herpesvirus 8 open reading frame 21 is a thymidine and thymidylate kinase of narrow substrate specificity that efficiently phosphorylates zidovudine but not ganciclovir. J Virol, 74: 684–692

    Article  PubMed  CAS  Google Scholar 

  27. He F, Wang X, He B,et al. 2007. Human herpesvirus 8: serovprevalence and correlates in tumor patients from Xinjiang, China. J Med Virol, 79: 161–166.

    Article  PubMed  Google Scholar 

  28. Hocqueloux L, Agbalika F, Oksenhendler E,et al. 2001. Long-term remission of an AIDS-related primary effusion lymphoma with antiviral therapy. AIDS, 15: 280–282

    Article  PubMed  CAS  Google Scholar 

  29. Huang L M, Chao M F, Chen M Y,et al. 2001. Reciprocal regulatory interaction between human herpesvirus 8 and human immunodeficiency virus type 1. J Biol Chem, 276: 13427–13432.

    Article  PubMed  CAS  Google Scholar 

  30. Ioannidis J P, Collier A C, Cooper D A,et al. 1998. Clinical efficacy of high-dose acyclovir in patients with human immunodeficiency virus infection: a meta-analysis of randomized individual patient data. J Infect Dis, 178: 349–359.

    PubMed  CAS  Google Scholar 

  31. Iwayama S, Ono N, Ohmura Y,et al. 1998. Antiherpesvirus activities of (1kS,2kR)-9-[[1k, 2k-bis (hydroxymethyl)-cycloprop-1k-yl]methyl] (A-5021) in cell culture. Antimicrob Agents Chemother, 42: 1666–1670.

    PubMed  CAS  Google Scholar 

  32. Jung C, Bogner J R, Goebel F. 1998. Resolution of severe Kaposi’s sarcoma after initiation of antiretroviral triple therapy. Eur J Med Res, 3: 439–442.

    PubMed  CAS  Google Scholar 

  33. Katano H, Sato Y, Kurata T,et al. 2000. Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi’s sarcoma, and multicentric Castleman’s disease. Virology, 269: 335–344.

    Article  PubMed  CAS  Google Scholar 

  34. Katano H, Sato Y, Itoh H, Sata T. 2001. Expression of human herpesvirus 8 (HHV-8)-encoded immediate early protein, open reading frame 50, in HHV-8-associated diseases. J Hum Virol, 4: 96–102.

    PubMed  CAS  Google Scholar 

  35. Katz M H, Hessol N A, Buchbinder S P,et al. 1994. Temporal trends of opportunistic infections and malignancies in homosexual men with AIDS. J Infect Dis, 170: 198–202.

    PubMed  CAS  Google Scholar 

  36. Kedes D H, Ganem D. 1997. Sensitivity of Kaposi’s sarcoma-associated herpesvirus replication to antiviral drugs. Implications for potential therapy. J Clin Invest, 99: 2082–2086.

    CAS  Google Scholar 

  37. Keller S A, Schattner E J, Cesarman E. 2000. Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood, 96: 2537–2542.

    PubMed  CAS  Google Scholar 

  38. Krischer J, Rutschmann O, Hirschel B,et al. 1998. Regression of Kaposi’s sarcoma during therapy with HIV-1 protease inhibitors: a prospective pilot study. J Am Acad Dermatol, 38: 594–598

    Article  PubMed  CAS  Google Scholar 

  39. Laney A S, Dollard S C, Jaffe H W,et al. 2004. Repeatedmeasures study of human herpesvirus 8 (HHV-8) DNA and antibodies in men seropositive for both HHV-8 and HIV. AIDS, 18: 1819–1826.

    Article  PubMed  CAS  Google Scholar 

  40. Leao J C, Kumar N, McLean K A,et al. 2000. Effect of human immunodeficiency virus-1 protease inhibitors on the clearance of human herpesvirus 8 from blood of human immunodeficiency virus-1-infected patients. J Med Virol, 62: 416–420.

    Article  PubMed  CAS  Google Scholar 

  41. Lebbe C, Blum L, Pellet C,et al. 1998. Clinical and biological impact of antiretroviral therapy with protease inhibitors on HIV-related Kaposi’s sarcoma. AIDS, 12: F45–49.

    Article  PubMed  CAS  Google Scholar 

  42. Little R F, Merced-Galindez F, Staskus K,et al. 2003. A pilot study of cidofovir in patients with Kaposi sarcoma. J Infect Dis, 187: 149–153.

    Article  PubMed  CAS  Google Scholar 

  43. Lock M J, Thorley N, Teo J,et al. 2002. Azidodeoxythymidine and didehydrodeoxythymidine as inhibitors and substrates of the human herpesvirus 8 thymidine kinase. J Antimicrob Chemother, 49: 359–366.

    Article  PubMed  CAS  Google Scholar 

  44. Luppi M, Trovato R, Barozzi P,et al. 2005. Treatment of herpesvirus associated primary effusion lymphoma with intracavity cidofovir. Leukemia, 19: 473–476.

    Article  PubMed  CAS  Google Scholar 

  45. Martin D F, Kuppermann B D, Wolitz R A,et al.1999. Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. N Engl J Med, 340: 1063–1070.

    Article  PubMed  CAS  Google Scholar 

  46. Martinelli C, Zazzi M, Ambu S,et al. 1998. Complete regression of AIDS-related Kaposi’s sarcoma-associated human herpesvirus-8 during therapy with indinavir. AIDS, 12: 1717–1719

    PubMed  CAS  Google Scholar 

  47. Medveczky M M, Horvath E, Lund T,et al. 1997. In vitro antiviral drug sensitivity of the Kaposi’s sarcoma-associated herpesvirus. AIDS, 11: 1327–1332.

    Article  PubMed  CAS  Google Scholar 

  48. Miller G, Heston L, Grogan E,et al. 1997. Selective switch between latency and lytic replication of KSV and EBV in dually infected body-cavity lymphoma cells, J Virol, 71: 314–324.

    PubMed  CAS  Google Scholar 

  49. Mocroft A, Youle M, Gazzard B,et al. 1996. Anti-herpesvirus treatment and risk of Kaposi’s sarcoma in HIV infection. Royal Free/Chelsea and Westminster Hospitals Collaborative Group. AIDS, 10: 1101–1105.

    CAS  Google Scholar 

  50. Monini P, Colombini S, Sturzl M,et al. 1999. Reactivation and persistence of HHV-8 infection in B-cells and monocytes by Th1 cytokines increased in Kaposi’s sarcoma. Blood, 93: 4044–4058.

    PubMed  CAS  Google Scholar 

  51. Murphy M, Armstrong D, Sepkowitz K A,et al. 1997. Regression of AIDS-related Kaposi’s sarcoma following treatment with an HIV-1 protease inhibitor. AIDS, 11: 261–262

    PubMed  CAS  Google Scholar 

  52. Neyts J, Andrei G, Snoeck R,et al. 1994. The N-7-substituted acyclic nucleoside analog 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine is a potent and selective inhibitor of herpesvirus replication. Antimicrob Agents Chemother, 38: 2710–2716.

    PubMed  CAS  Google Scholar 

  53. Neyts J, Jähne G, Andrei G,et al. 1995. In vivo antiherpesvirus activity of N-7-substituted acyclic nucleoside analog 2-amino-7-[(1,3-dihydroxy-2-propoxy) methyl] purine. Antimicrob Agents Chemother, 1995; 39: 56–60.

    PubMed  CAS  Google Scholar 

  54. Neyts J, De Clercq E. 1997. Antiviral drug susceptibility of human herpesvirus 8. Antimicrob Agents Chemother, 41: 2754–2756.

    PubMed  CAS  Google Scholar 

  55. Norbeck D W, Kern E, Hayashi S,et al. 1990. Cyclobut-A and cyclobut-G: broad-spectrum antiviral agents with potential utility for the therapy of AIDS. J Med Chem, 33: 1281–1285.

    Article  PubMed  CAS  Google Scholar 

  56. Oksenhendler E, Carcelain G, Aoki Y,et al. 2000. High levels of human herpesvirus 8 viral load, human interleukin-6, interleukin-10, and C reactive protein correlate with exacerbation of multicentric castleman disease in HIV-infected patients. Blood, 96: 2069–2073.

    PubMed  CAS  Google Scholar 

  57. Pastore R D, Chadburn A, Kripas C,et al. 2000. Novel association of haemophagocytic syndrome with Kaposi’s sarcoma-associated herpesvirus-related primary effusion lymphoma. Br J Haematol, 111: 1112–1115.

    Article  PubMed  CAS  Google Scholar 

  58. Pati S, Pelser C B, Dufraine J,et al. 2002. Antitumorigenic effects of HIV protease inhibitor ritonavir: inhibition of Kaposi sarcoma. Blood, 99: 3771–3779.

    Article  PubMed  CAS  Google Scholar 

  59. Pellet C, Chevret S, Blum L,et al. 2001. Virologic and immunologic parameters that predict clinical response of AIDS-associated Kaposi’s sarcoma to highly active antiretroviral therapy. J Invest Dermatol, 117: 858–863.

    Article  PubMed  CAS  Google Scholar 

  60. Portsmouth S, Stebbing J, Gill J,et al. 2003. A comparison of regimens based on non-nucleoside reverse transcriptase inhibitors or protease inhibitors in preventing Kaposi’s sarcoma. AIDS, 17: F17–22.

    Article  PubMed  CAS  Google Scholar 

  61. Rey D, Schmitt M P, Partisani M,et al. 2001. Efavirenz as a substitute for protease inhibitors in HIV-1-infected patients with undetectable plasma viral load on HAART: a median follow-up of 64 weeks. J Acquir Immune Defic Syndr, 27: 459–462.

    PubMed  CAS  Google Scholar 

  62. Schaeffer H J, Beauchamp L, de Miranda P,et al. 1978. 9-(2-Hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature, 272: 583–585.

    Article  PubMed  CAS  Google Scholar 

  63. Schulz T F. 1999. Epidemiology of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. Adv Cancer Res, 76: 121–160.

    Article  PubMed  CAS  Google Scholar 

  64. Sgadari C, Barillari G, Toschi E,et al. 2002. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat Med, 8: 225–232.

    Article  PubMed  CAS  Google Scholar 

  65. Sgadari C, Monini P, Barillari G,et al. 2003. Use of HIV protease inhibitors to block Kaposi’s sarcoma and tumour growth. Lancet Oncol, 4: 537–547.

    Article  PubMed  CAS  Google Scholar 

  66. Shimba N, Nomura A M, Marnett A B,et al. 2004. Herpesvirus protease inhibition by dimer disruption. J Virol, 78: 6657–6665.

    Article  PubMed  CAS  Google Scholar 

  67. Smith M S, Bloomer C, Horvat R,et al. 1997. Detection of human herpesvirus 8 DNA in Kaposi’s sarcoma lesions and peripheral blood of human immunodeficiency virus-positive patients and correlation with serologic measurements. J Infect Dis, 176: 84–93.

    Article  PubMed  CAS  Google Scholar 

  68. Tavio M, Nasti G, Spina M,et al. 1998. Highly active antiretroviral therapy in HIV-related Kaposi’s sarcoma. Ann Oncol, 9: 923–923.

    Article  PubMed  CAS  Google Scholar 

  69. Valencia M E, Moreno V, Martinez P,et al. 2005. Favorable outcome of Castleman’s disease treated with oral valganciclovir. Med Clin (Barc), 125: 399.

    Article  Google Scholar 

  70. Wang J, Froeyen M, Hendrix C,et al. 2000. The cyclo-hexene ring system as a furanose mimic: synthesis and antiviral activity of both enantiomers of cyclo-hexenyl-guanine. J Med Chem, 43: 736–745.

    Article  PubMed  CAS  Google Scholar 

  71. Wilkinson J, Cope A, Gill J,et al. 2002. Identification of Kaposi’s sarcoma-associated herpesvirus (KSHV)-specific cytotoxic T-lymphocyte epitopes and evaluation of reconsti-tution of KSHV-specific responses in human immunodeficiency virus type 1-infectedpatients receivinghighly active antiretroviral therapy. J Virol, 76: 2634–2640.

    Article  PubMed  CAS  Google Scholar 

  72. Ziegler J, Newton R, Bourboulia D,et al. 2003. Risk factors for Kaposi’s sarcoma: a case-control study of HIV-seronegative people in Uganda. Int J Cancer, 103: 233–240.

    Article  PubMed  CAS  Google Scholar 

  73. Zietz C, Bogner J R, Goebel F D,et al. 1999. An unusual cluster of cases of Castleman’s disease during highly active antiretroviral therapy for AIDS. N Engl J Med, 340: 1923–1924.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xulin Chen.

Additional information

Foundation item: National Natural Science Foundation of China (30670093)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Rr., Liao, Qj. & Chen, X. Prevention and treatment of KSHV-associated diseases with antiviral drugs. Virol. Sin. 23, 486–495 (2008). https://doi.org/10.1007/s12250-008-2995-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-008-2995-y

Key words

CLC number

Navigation