Skip to main content

Advertisement

Log in

The Development of a Novel Pharmaceutical Formulation of D-Tagatose for Spray-Drying

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

D-tagatose is an alternative sweetener with superior properties for reducing overall sugar absorption, which is especially important in the diabetic population. Large-scale production of D-tagatose remains costly, thereby limiting its commercialization. Introducing the unit operation of spray-drying may reduce some of these costs. However, D-tagatose is challenging to spray-dry due to its hydrophilic nature and low glass transition temperature (Tg). An appropriate spray-drying feed solution may offer an alternative approach if the material produced is glassy in nature, thus avoiding stickiness issues associated with Tgs less than the outlet temperature of the spray-dryer. Proof-of-concept formulations and processing conditions are presented in this study.

Methods

D-tagatose was formulated with several excipients and screened for a sufficiently high Tg as characterized by differential scanning calorimetry (DSC). The spray-dry formulations were further characterized using attenuated total reflectance Fourier transform infrared spectrometry (ATR-FTIR), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM), and several viable options were identified.

Results

D-tagatose formulated with HPMCAS and K90 both raised the Tg mix (\( {T}_{g_{\mathrm{mix}}} \)) to within the processing range of spray-drying. These formulations were found to be sufficiently soluble in acetone/water cosolvent systems allowing for the production of processable powder. Specifically, SEM results confirm that both D-tagatose-HPMCAS and D-tagatose-K90 formulations result in particle formation using a small-scale dryer. Large-scale spray-drying is expected to allow for a greater processing range in comparison to small scale, suggesting that this approach will help commercialization. ATR-FTIR and PXRD results suggested that spray-dried D-tagatose-K90 composites lacked crystallinity, unlike the D-tagatose-HPMCAS composites.

Conclusions

The addition of functional excipients allowed D-tagatose composites to be harvested using a typical laboratory-scale spray-dryer equipped with a bi-fluid nozzle. D-tagatose-K90 lacks crystallinity, while crystallinity is present in D-tagatose-HPMCAS composites. Crystallinity may not be a critical factor (depending on the future application) given the high aqueous solubility and high loading of the sugar. Both composites retained a sweet taste, suggesting that this spray-drying method may be worth further development. Other polymers with high Tg may be feasible as composites as well—as long as the amorphous phase or the residual amorphous phase has a Tg greater than, or about equal to, the outlet temperature of the spray-dryer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adhikari B, Howes T, Bhandari BR, Truong V. Characterization of the surface stickiness of fructose-maltodextrin solutions during drying. Dry Technol. 2003;21:17–34. https://doi.org/10.1081/DRT-120017281.

    Article  CAS  Google Scholar 

  2. Ahern JP, Skud TE. Food labeling; health claims; dietary noncariogenic carbohydrate sweeteners and dental caries. 2007;72:31–37.

  3. Al-Rub FAA, Banat FA, Simandl J. Experimental study of vapor-liquid equilibrium of acetone-water system using headspace gas chromatography. Sep Sci Technol. 1999;34:3197–209. https://doi.org/10.1081/SS-100100830.

    Article  CAS  Google Scholar 

  4. Bhandari BR, Datta N, Howes T. Problems associated with spray drying of sugar-rice foods. Dry Technol. 1997;15:671–84.

    Article  CAS  Google Scholar 

  5. Boel E, Koekoekx R, Dedroog S, Babkin I, Vetrano MR, Clasen C, et al. Unraveling particle formation: from single droplet drying to spray drying and electrospraying. Pharmaceutics. 2020;12:1–58. https://doi.org/10.3390/pharmaceutics12070625.

    Article  CAS  Google Scholar 

  6. Collins J, Robinson C, Danhof H, Knetsch CW, Van Leeuwen HC, Lawley TD, et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature. 2018;553:291–4. https://doi.org/10.1038/nature25178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ensor M, Banfield AB, Smith RR, Williams J, Lodder RA. Safety and efficacy of D-tagatose in glycemic control in subjects with type 2 diabetes. J Endocrinol Diabetes Obes. 2015;3:1–12.

    Google Scholar 

  8. FAO. Joint FAO/WHO Expert Committee on Food Additives. 2004; p. 1–18.

  9. FDA. Guidance on impurities: residual solvents. Fed Regist. 1997;62:67377–88.

    Google Scholar 

  10. Foster KD, Bronlund JE, Paterson AHJ. Glass transition related cohesion of amorphous sugar powders. J Food Eng. 2006;77:997–1006. https://doi.org/10.1016/j.jfoodeng.2005.08.028.

    Article  CAS  Google Scholar 

  11. Handscomb CS, Kraft M, Bayly AE. A new model for the drying of droplets containing suspended solids. Chem Eng Sci. 2008;64:628–37. https://doi.org/10.1016/j.ces.2008.04.051.

    Article  CAS  Google Scholar 

  12. Handscomb CS, Kraft M, Bayly AE. A new model for the drying of droplets containing suspended solids after shell formation. Chem Eng Sci. 2009;64:228–46. https://doi.org/10.1016/j.ces.2008.04.051.

    Article  CAS  Google Scholar 

  13. Hugo M, Kunath K, Dressman J. Selection of excipient, solvent and packaging to optimize the performance of spray-dried formulations: case example fenofibrate. Drug Dev Ind Pharm. 2013;39:402–12. https://doi.org/10.3109/03639045.2012.685176.

    Article  CAS  PubMed  Google Scholar 

  14. Hurtta M, Pitkänen I, Knuutinen J. Melting behaviour of D-sucrose, D-glucose and D-fructose. Carbohydr Res. 2004;339:2267–73. https://doi.org/10.1016/j.carres.2004.06.022.

    Article  CAS  PubMed  Google Scholar 

  15. Karl M, Nalawade S, Maschke A, Djuric D, Kolter K. Suitability of pure and plasticized polymers for hot melt extrusion. 2010;68:67056.

  16. Kawai K, Hagiwara T, Takai R, Suzuki T. Maillard reaction rate in various glassy matrices. Biosci Biotechnol Biochem. 2004;68:2285–8. https://doi.org/10.1271/bbb.68.2285.

    Article  CAS  PubMed  Google Scholar 

  17. Kawamura Y. D-TAGATOSE chemical and technical assessment (CTA). 2004. https://doi.org/10.1002/hlca.193702001204.

  18. Kelly CP, Pothoulakis C, LaMont JT. Clostridium difficile colitis. N Engl J Med. 1994;330:257–62.

    Article  CAS  PubMed  Google Scholar 

  19. Kim P. Current studies on biological tagatose production using L-arabinose isomerase: a review and future perspective. Appl Microbiol Biotechnol. 2004;65:243–9. https://doi.org/10.1007/s00253-004-1665-8.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar S. Spray dried nano-crystalline powders and in vitro dissolution performance. 2014.

  21. LaFountaine JS, Prasad LK, Brough C, Miller DA, McGinity JW, Williams RO. Thermal processing of PVP- and HPMC-based amorphous solid dispersions. AAPS PharmSciTech. 2016;17:120–32. https://doi.org/10.1208/s12249-015-0417-7.

    Article  CAS  PubMed  Google Scholar 

  22. Levin GV. Tagatose, the new GRAS sweetener and health product. J Med Food. 2002;5:23–36. https://doi.org/10.1089/109662002753723197.

    Article  CAS  PubMed  Google Scholar 

  23. Levin GV, Zehner LR, Saunders JP, Beadle JR. Sugar substitutes: their energy values, bulk characteristics, and potential health benefits. Am J Clin Nutr. 1995;62:1161S–8S. https://doi.org/10.1093/ajcn/62.5.1161S.

    Article  CAS  PubMed  Google Scholar 

  24. Lievonen SM, Laaksonen TJ, Roos YH. Nonenzymatic browning in food models in the vicinity of the glass transition: effects of fructose, glucose, and xylose as reducing sugar. J Agric Food Chem. 2002;50:7034–41. https://doi.org/10.1021/jf0255275.

    Article  CAS  PubMed  Google Scholar 

  25. Lu Y, Levin GV, Donner TW. Tagatose, a new antidiabetic and obesity control drug. Diabetes. Obes Metab. 2008;10:109–34. https://doi.org/10.1111/j.1463-1326.2007.00799.x.

    Article  CAS  Google Scholar 

  26. Maxson, Mitchell. Safety and efficacy of D-tagatose in glycemic control in subjects with type 2 diabetes. Physiol Behav. 2016;176:139–48. https://doi.org/10.1016/j.physbeh.2017.03.040.

    Article  CAS  Google Scholar 

  27. Mcphillips H, Craig DQM, Royall PG, Hill VL. Characterisation of the glass transition of HPMC using modulated temperature differential scanning calorimetry. 1999;180:83–90.

  28. Muzaffar K, Nayik GA, Kumar P. Stickiness problem associated with spray drying of sugar and acid rich foods : a mini review. Nutr Food Sci. 2015;S12(003):11–3. https://doi.org/10.4172/2155-9600.1000S12003.

    Article  Google Scholar 

  29. Ng SW, Slining MM, Popkin BM. Use of caloric and noncaloric sweeteners in US consumer packaged foods, 2005-2009. J Acad Nutr Diet. 2012;112:2005–9. https://doi.org/10.1016/j.jand.2012.07.009.

    Article  Google Scholar 

  30. Noyes WA, Warfel RR. The boiling-point curve for mixtures of ethyl alcohol and water. J Am Chem Soc. 1901;23:463–8. https://doi.org/10.1021/ja02033a004.

    Article  CAS  Google Scholar 

  31. Of L. Regulation effect in hydrophilic polymers. 1994;174:733–736.

  32. Ozmen L, Langrish TAG. A study of the limitations to spray dryer outlet performance. Dry Technol. 2003;21:895–917. https://doi.org/10.1081/DRT-120021691.

    Article  Google Scholar 

  33. Poozesh S, Setiawan N, Akafuah NK, Saito K, Marsac PJ. Assessment of predictive models for characterizing the atomization process in a spray dryer’s bi-fluid nozzle. Chem Eng Sci. 2018;180:42–51. https://doi.org/10.1016/j.ces.2018.01.033.

    Article  CAS  Google Scholar 

  34. Qun-Fang L, Rui-Sen L, Dan-Yan N, Yu-Chun H. Thermal conductivities of some organic solvents and their binary mixtures. J Chem Eng Data. 1997;42:971–4. https://doi.org/10.1021/je960351m.

    Article  Google Scholar 

  35. Rippe JM, Angelopoulos TJ. Relationship between added sugars consumption and chronic disease risk factors: current understanding. Nutrients. 2016;8. https://doi.org/10.3390/nu8110697.

  36. Roe KD, Labuza TP. Glass transition and crystallization of amorphous trehalose-sucrose mixtures. Int J Food Prop. 2005;8:559–74. https://doi.org/10.1080/10942910500269824.

    Article  CAS  Google Scholar 

  37. Skytte UP. Introduction to Gaio® tagatose–a healthy sweetener. 2000.

  38. Sturm DR, Chiu SW, Moser JD, Danner RP. Solubility of water and acetone in hypromellose acetate succinate, HPMCAS-L. Fluid Phase Equilib. 2016;429:227–32. https://doi.org/10.1016/j.fluid.2016.09.006.

    Article  CAS  Google Scholar 

  39. Volker Bühler. Kollidon®: polyvinylpyrrolidone excipients for the pharmaceutical industry. 2008.

  40. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65:315–499. https://doi.org/10.1124/pr.112.005660.

    Article  CAS  PubMed  Google Scholar 

  41. Yang Q, Zhang Z, Gregg EW, Flanders WD, Merritt R, Hu FB. Added sugar intake and cardiovascular diseases mortality among us adults. JAMA Intern Med. 2014;174:516–24. https://doi.org/10.1001/jamainternmed.2013.13563.

    Article  CAS  PubMed  Google Scholar 

  42. Yang W, Dall TM, Beronjia K, Lin J, Semilla AP, Chakrabarti R, et al. Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018;41:917–28. https://doi.org/10.2337/dci18-0007.

    Article  Google Scholar 

  43. Yoshizane C, Mizote A, Yamada M, Arai N, Arai S, Maruta K, et al. Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects. Nutr J. 2017;16:1–6. https://doi.org/10.1186/s12937-017-0233-x.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the Department of Pharmaceutical Sciences at the University of Kentucky for financial support of this project. The authors would also like to acknowledge the University of Kentucky Electron Microscopy Center, along with their funding resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Lodder.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 700 kb)

ESM 2

(DOCX 700 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, H.R., Alsharif, F.M., Marsac, P.J. et al. The Development of a Novel Pharmaceutical Formulation of D-Tagatose for Spray-Drying. J Pharm Innov 17, 194–206 (2022). https://doi.org/10.1007/s12247-020-09507-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09507-4

Keywords

Navigation