Skip to main content

Advertisement

Log in

Spectroscopic Analysis and Dissolution Properties Study of Tosufloxacin Tosylate/Hydroxypropyl-β-Cyclodextrin Inclusion Complex Prepared by Solution-Enhanced Dispersion with Supercritical CO2

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to prepare tosufloxacin tosylate (TFLX) and hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complexes by solution-enhanced dispersion with supercritical CO2 (SEDS) and optimize process parameters, in vitro dissolution evaluation, and determination of inclusion sites.

Methods

The effects of operating pressure, operating temperature, drug concentration, and solution flow rate on the particle size and morphology of the inclusion complex were analyzed by a single factor design experiment. The SEDS-prepared inclusion complex was characterized by TG/DSC, XRD, SEM, FT-IR, 1H NMR, 2D-ROESY, and MD and measured for in vitro dissolution, solubility, and antibacterial activity.

Results

The optimum drug concentration was 40 mg/mL and pressure 16 MPa, temperature 35 °C, and solution flow rate 1 mL/min; under this condition, the mean particle size of the inclusion complex was 1.91 μm. All characterization results confirmed the formation of an amorphous inclusion complex and the sites where TFLX and HP-β-CD bind through the H-bond were located on the aromatic B ring, pyrrolidine, and naphthyridine ring protons. Furthermore, the solubility of the inclusion complex (489.87 μg/mL) was significantly higher than that of TFLX, and the dissolution rate of TFLX increased from the initial 13.99 to 61.04% in ultrapure water. In vitro study showed that the inclusion complex maintained the antibacterial effect of TFLX.

Conclusion

TFLX/HP-β-CD inclusion complex prepared by manipulating SEDS process conditions could significantly improve the dissolution and solubility of the water-insoluble TFLX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

TFLX:

Tosufloxacin tosylate

HP-β-CD:

Hydroxypropyl-β-cyclodextrin

CDs:

Cyclodextrins

DMF:

N,N-dimethylformamide

EtOH:

Ethanol

MeOH:

Methanol

SEDS:

Solution-enhanced dispersion by supercritical fluids

SEM:

Scanning electron microscopy

TG/DSC:

Thermogravimetric/differential scanning calorimetry

XRD:

X-ray diffractometry

FT-IR:

Fourier transform infrared spectroscopy

1H NMR and 2D ROESY:

1H nuclear magnetic resonance and 2D rotating-frame Overhauser effect spectroscopy

MD:

Molecular docking simulations

S. aureus :

Staphylococcus aureus

E. coli :

Escherichia coli

References

  1. Rodriguez-Aller M, Guillarme D, Veuthey JL, Gurny R. Strategies for formulating and delivering poorly water-soluble drug. J Drug Deliv Sci Technol. 2015;30:342–51.

    CAS  Google Scholar 

  2. Sievens-Figueroa L, Bhakay A, Jerez-Rozo JI, Pandya N, Romanach RJ, Michniak-Kohn B, et al. Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS class II drug nanoparticles for pharmaceutical applications. Int J Pharm. 2012;423:496–508.

    CAS  PubMed  Google Scholar 

  3. Takeuchi N, Ohkusu M, Hoshino T, Naito S, Takaya A, Yamamoto T, et al. Emergence of quinolone-resistant strains in Streptococcus pneumoniae isolated from paediatric patients since the approval of oral fluoroquinolones in Japan. J Infect Chemother. 2017;23:218–23.

    CAS  PubMed  Google Scholar 

  4. Takahata M, Nishino T. Antibacterial activities of tosufloxacin against anaerobic bacteria and the electron micrograph of its bactericidal effects. Chemotherapy. 1997;43:153–8.

    CAS  PubMed  Google Scholar 

  5. Barry AL, Fuchs PC. In vitro activities of sparfloxacin, tosufloxacin, ciprofloxacin, and fleroxacin. Antimicrob Agents Chemother. 1991;35:955–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Norrby SR. New fluoroquinolones: towards expanded indications. Curr Opin Infect Dis. 1997;10:440–3.

    Google Scholar 

  7. Yoshida K, Kobayashi N, Saitoh H, Negishi T, Yamada T, Watanabe T, et al. Clinical efficacy of tosufloxacin on the patients with urinary tract infections. Hinyokika Kiyo. 1992;38:129–34.

    CAS  PubMed  Google Scholar 

  8. Mikamo H, Yamagishi Y, Tanaka K, Watanabe K, Fujiwara M, Iwasaku K, et al. Efficacy of tosufloxacin in genital chlamydial infections. Jap J Antibiot. 2009;63:406–14.

    Google Scholar 

  9. George RC, Uttley AHC. Susceptibility of enterococci and epidemiology of enterococcal infection in the 1980s. Epidemiol Infect. 1989;103:403–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chin NX, Neu HC. In-vitro activity of WIN 57273 compared to the activity of the fluoroquinolones and two β-lactam antibiotics. J Antimicrob Chemother. 1991;27:781–91.

    CAS  PubMed  Google Scholar 

  11. Chu DT, Lico IM, Swanson RN, Marsh KC, Plattner JJ, Pernet AG. Synthesis and biological properties of A-71497: a prodrug of tosufloxacin. Drugs Exp Clin Res. 1990;16:435–43.

    CAS  PubMed  Google Scholar 

  12. Yuan ZB, Guo P. Study of determination method of dissolution of tosufloxacin tosylate capsules. Chin J Pharm Pract. 1998;16:157–9.

    Google Scholar 

  13. Christian Leuner JD. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Google Scholar 

  14. Jena SK, Singh C, Dora CP, Suresh S. Development of tamoxifen-phospholipid complex: novel approach for improving solubility and bioavailability. Int J Pharm. 2014;473:1–9.

    CAS  PubMed  Google Scholar 

  15. Michael VV, Rodriguez J, Jamison JA, Borromeo PS, Turner WW. The synthesis of water soluble prodrugs analogs of echinocandin. B Bioorg Med Chem Lett. 1999;9:1863–8.

    Google Scholar 

  16. Bora PB, Bhise K. Formulation and evaluation of self micro emulsifying drug delivery system of low solubility drug for enhanced solubility and dissolution. Asian J Biomed Pharm Sci. 2013;2:7–14.

    Google Scholar 

  17. Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36:43–8.

    CAS  PubMed  Google Scholar 

  18. Zhao MR, Wang LS, Li HW, Wang YJ, Yang H. Preparation, physicochemical characterization and in vitro dissolution studies of azithromycin-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem. 2016;85:137–49.

    CAS  Google Scholar 

  19. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329:1–11.

    CAS  PubMed  Google Scholar 

  20. Li Y, Zhen W. Preparation, structure and performance of poly(lactic acid)/poly(lactic acid)-γ-Cyclodextrin inclusion complex-poly (glycidyl methacrylate) composites. Macromol Res. 2018;26:215–25.

    CAS  Google Scholar 

  21. Wang H, Xie X, Zhang F, Zhou Q, Tao Q, Zou Y, et al. Evaluation of cholesterol depletion as a marker of nephrotoxicity in vitro for novel beta-cyclodextrin derivatives. Food Chem Toxicol. 2011;49:1387–93.

    CAS  PubMed  Google Scholar 

  22. Wang L, Yan J, Li Y, Xu K, Li S. The influence of hydroxypropyl-beta-cyclodextrin on the solubility, dissolution, cytotoxicity, and binding of riluzole with human serum albumin. J Pharm Biomed Anal. 2016;117:453–63.

    CAS  PubMed  Google Scholar 

  23. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3:1023–35.

    CAS  PubMed  Google Scholar 

  24. Hong HL, Sun JF, Zhang Y, Zhu N, Han LM, Suo QL. Preparation, characterization and in vitro evaluation of tosufloxacin tosylate and hydroxypropyl-beta-cyclodextrin inclusion complex. Indian J Pharm Sci. 2019;81:249–58.

    CAS  Google Scholar 

  25. Ahn BK, Lee SG, Kim SR, Lee DH, Oh MH, Lee MW, et al. Inclusion compound formulation of hirsutenone with beta-cyclodextrin. J Pharm Investig. 2013;43:453–9.

    CAS  Google Scholar 

  26. Nishikawa S, Kondo M, Kamimura E. Ultrasonic relaxation associated with inclusion complex of drugs and β-cyclodextrin. Bull Chem Soc Jpn. 2007;80:694–8.

    CAS  Google Scholar 

  27. Celebioglu A, Uyar T. Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir. 2011;27:6218–26.

    CAS  PubMed  Google Scholar 

  28. Oguchi T, Okada M, Yonemochi E, Yamamoto K, Nakai Y. Freeze-drying of drug-additive binary systems III. Crystallization of α-cyclodextrin inclusion complex in freezing process. Int J Pharm. 1990;61:27–34.

    CAS  Google Scholar 

  29. Luciana WPO, Fernandes P, Sztatisz J, Szilágyi IM. Solid state studies on molecular inclusions of Lippia sidoides essential oil obtained by spray drying. J Therm Anal Calorim. 2009;95:855–63.

    Google Scholar 

  30. Lee CW, Kim SJ, Youn YS, Widjojokusumo E, Lee YH, Kim J, et al. Preparation of bitter taste masked cetirizine dihydrochloride/β-cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. J Supercrit Fluids. 2010;55:348–57.

    CAS  Google Scholar 

  31. Chen AZ, Li L, Wang SB, Zhao C, Liu YG. Nanonization of methotrexate by solution-enhanced dispersion by supercritical CO2. J Supercrit Fluids. 2012;67:7–13.

    CAS  Google Scholar 

  32. Banchero M, Manna L. Investigation of the piroxicam/hydroxypropyl-β-cyclodextrin inclusion complexation by means of a supercritical solvent in the presence of auxiliary agents. J Supercrit Fluids. 2011;57:259–66.

    CAS  Google Scholar 

  33. Matos RL, Lu TJ, Prosapio V, McConville C, Leeke G,Ingram A. Coprecipitation of curcumin/PVP with enhanced dissolution properties by the supercritical antisolvent process. J CO2 Util. 2019;30:48–62.

  34. Kaga K, Honda M, Adachi T, Honjo M. Nanoparticle formation of PVP/astaxanthin inclusion complex by solution-enhanced dispersion by supercritical fluids (SEDS): effect of PVP and astaxanthin Z-isomer content. J Supercrit Fluids. 2018;136:44–51.

    CAS  Google Scholar 

  35. Adeoye O, Costa C, Casimiro T, Aguiar-Ricardo A, Marques HC. Preparation of ibuprofen/hydroxypropyl-γ-cyclodextrin inclusion complexes using supercritical CO2-assisted spray drying. J Supercrit Fluids. 2018;133:479–85.

    CAS  Google Scholar 

  36. Miletic T, Kyriakos K, Graovac A, Ibric S. Spray-dried voriconazole-cyclodextrin complexes: solubility, dissolution rate and chemical stability. Carbohydr Polym. 2013;98:122–31.

    CAS  PubMed  Google Scholar 

  37. Michalska P, Wojnicz A, Ruiz-Nuño A, Abril S. Inclusion complex of ITH12674 with 2-hydroxypropyl-β-cyclodextrin: preparation, physical characterization and pharmacological effect. Carbohydr Polym. 2017;157:94–104.

    CAS  PubMed  Google Scholar 

  38. Zhao MM, Wang HY, Yang B, Tao H. Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chem. 2010;120:1138–42.

    CAS  Google Scholar 

  39. Reverchon E, Marco ID. Supercritical antisolvent precipitation of cephalosporins. Powder Technol. 2006;164:139–46.

    CAS  Google Scholar 

  40. Sui X, Wei W, Yang L, Zu Y, Zhao C. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process. Int J Pharm. 2013;423:471–9.

    Google Scholar 

  41. Miao H, Chen Z, Xu W, Wang W, Song Y, Wang Z. Preparation and characterization of naringenin microparticles via a supercritical anti-solvent process. J Supercrit Fluids. 2017;131:19–25.

    Google Scholar 

  42. Hong HL, Suo QL, Li FW, Wei XH, Zhang JB. Precipitation and characterization of chelerythrine microparticles by the supercritical antisolvent process. Chem Eng Technol. 2008;31:1051–5.

    CAS  Google Scholar 

  43. Erriguible A, Fadli T, Subra-Paternault P. A complete 3D simulation of a crystallization process induced by supercritical CO2 to predict particle size. Comput Chem Eng. 2013;52:1–9.

    CAS  Google Scholar 

  44. Lengsfeld R, Delplanque JP, Barocas VH, Randolph TW. Mechanism governing microparticle morphology during precipitation by a compressed antisolvent: atomization vs nucleation and growth. J Phys Chem B. 2000;104:2725–35.

    CAS  Google Scholar 

  45. Wei Y, Zhang J, Zhou Y, Bei W, Li Y, Yuan Q, et al. Characterization of glabridin/hydroxypropyl-β-cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr Polym. 2017;159:152–60.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the National Natural Science Foundation of China (Grant No. 21666026) and the Natural Science Foundation of Inner Mongolia (Grant No. 2015MS0204) for their financial support in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Hong.

Ethics declarations

Conflict Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 27055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Hong, H., Zhu, N. et al. Spectroscopic Analysis and Dissolution Properties Study of Tosufloxacin Tosylate/Hydroxypropyl-β-Cyclodextrin Inclusion Complex Prepared by Solution-Enhanced Dispersion with Supercritical CO2. J Pharm Innov 15, 603–616 (2020). https://doi.org/10.1007/s12247-019-09405-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-019-09405-4

Keywords

Navigation