Skip to main content
Log in

De Novo Approach to Utilize Mango (Mangifera indica L.) Seed Kernel Lipid in Pharmaceutical Lipid Nanoformulation

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

The naturally occurring lipids are non-toxic and biocompatible, hence suitable for pharmaceutical applications. The present study reports the application of mango lipid as a safe pharmaceutical excipient in the formulation of nanostructured lipid carriers (NLCs). The mango lipid was extracted by hot continuous percolation process using a Soxhlet apparatus and analyzed as per USP requirements by TLC and LC-MS. The safety profile of the lipid was studied by acute toxicity study in a rat model as per OECD guidelines. NLC formulation was developed with the physically modified mango lipid as the solid lipid and oleic acid as the liquid lipid by the modified emulsification technique. The compatibility of the lipid with other excipients was studied by differential scanning calorimetry (DSC) and FT-IR analysis. Cytotoxicity of the NLC formulation was studied with mouse brain endothelial cells (bEnd.3) by MTT assay. The TLC and LC-MS studies suggest that the mango lipid contains fatty acids composed of oleic acid (43.8% w/w), linoleic acid (3.6% w/w), stearic acid (43.2% w/w), palmitic acid (4.9% w/w), linolenic acid (2.3% w/w), and arachidic acid (2.2% w/w). The acute toxicity study and MTT assay suggest the safe use of the mango lipid at the cellular level in the living system. The spherical homogeneous nanometric NLCs were developed. DSC and FT-IR study confirm the compatibility of the lipid with the general components of the lipid nanoparticles. This work provides a new dimension to Mangifera indica L. lipid for its safe use in the development of novel lipid nanoformulations for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fowomola MA. Some nutrients and antinutrients contents of mango (Mangifera indica, L) seed. African J Food Sci. 2010;4:472–6.

    CAS  Google Scholar 

  2. Sriwimon W, Boonsupthip W. Utilization of partially ripe mangoes for freezing preservation by impregnation of mango juice and sugars. Food Sci Technol. 2011;44:375–83.

    CAS  Google Scholar 

  3. Ramteke RS, Eipeson WE. Effect of additives on the stability of mango aroma concentrate during storage. J Food Sci Technol. 1997;34:195–9.

    CAS  Google Scholar 

  4. Muchiri DR, Mahungu SM, Gituanja SN. Studies on mango (Mangifera indica, L.) kernel fat of some Kenyan varieties in Meru. J Am Oil Chem Soc. 2012;89:1567–75.

    Article  CAS  Google Scholar 

  5. Omoregie E. Utilization and nutrient digestibility of mango seeds and palm kernel meal by juvenile Labeo senegalensis (Antheriniformes: Cyprinidae). Aquac Res. 2001;32:681–7.

    Article  CAS  Google Scholar 

  6. Kittiphoom S. Utilization of mango seed. Int Food Res J. 2012;19:1325–35.

    CAS  Google Scholar 

  7. Puravankara D, Boghra V, Sharma RS. Effect of antioxidant principles isolated from mango (Mangifera indica, L.) seed kernels on oxidative stability of buffalo ghee (butter-fat). J Sci Food Agric. 2000;80:522–6.

    Article  CAS  Google Scholar 

  8. Patel S. Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies. Rev Environ Sci Biotechnol. 2012;11:365–80.

    Article  CAS  Google Scholar 

  9. Maisuthisakul P, Gordon MH. Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chem. 2009;117:332–41.

    Article  CAS  Google Scholar 

  10. Bhattacharya K, Shukla VK. Mango butter in cosmetic formulations. Cosmet Toilet. 2002;117:65–70.

    CAS  Google Scholar 

  11. Mandawgade SD, Patravale VB. Formulation and evaluation of exotic fat based cosmeceuticals for skin repair. Indian J Pharm Sci. 2008;70:539–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jahurul MHA, Zaidul ISM, Norulaini NAN. Cocoa butter replacers from blends of mango seed fat extracted by supercritical carbon dioxide and palm stearin. Food Res Int. 2014;65:401–6.

    Article  CAS  Google Scholar 

  13. Solís-Fuentes JA, Durán-De-Bazúa MC. Mango seed uses: thermal behaviour of mango seed almond fat and its mixtures with cocoa butter. Bioresour Technol. 2004;92:71–8.

    Article  PubMed  Google Scholar 

  14. Jahurul MHA, Zaidul ISM, Norulaini NAN. Hard cocoa butter replacers from mango seed fat and palm stearin. Food Chem. 2014;154:323–9.

    Article  CAS  PubMed  Google Scholar 

  15. de Peña DG, Anguiano RGL, Arredondo JJM. Modification of the method 1 AOAC (CB-method) for the detection of aflatoxins. Bull Environ Contam Toxicol. 1992;49:485–9.

    Article  Google Scholar 

  16. Hilditch TP. Industrial oil and fat products. USA: Wiley; 1946.

    Google Scholar 

  17. Mahale S, Goswami-Giri A. Composition and characterization of refined oil compared with its crude oil from waste obtained from Mangifera indica. Asia J Res Chem. 2011;4:1415–9.

    Google Scholar 

  18. Daksha A, Jaywant P, Bhagyashree C, Subodh P. Estimation of sterols content in edible oil and ghee samples. Int J Pharm Sci Rev Res. 2010;5:135–7.

    Google Scholar 

  19. Rutkowski M, Grzegorczyk K. Modifications of spectrophotometric methods for antioxidative vitamins determination convenient in analytic practice. Acta Sci Pol. 2007;6:17–28.

    CAS  Google Scholar 

  20. Asha V. Phytochemical investigations, extraction and thin layer chromatography of Acorus calamus Linn. Int J Res Stud Biosci. 2015;3:18–22.

  21. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African J Tradit Complement Altern Med. 2011;8:1–10.

    CAS  Google Scholar 

  22. Nour AH, Elhussein SA, Osman NA. Characterization and chemical composition of the fixed oil of fourteen basil (Ocimum basilicum, L.) accessions grown in Sudan. Int J Chem Technol. 2010;2:113–9.

    CAS  Google Scholar 

  23. Mamoci E, Cavoski I, Simeone V, Mondelli D, Al-Bitar L, Caboni P. Chemical composition and in vitro activity of plant extracts from ferula communis and Dittrichia viscosa against postharvest fungi. Molecules. 2011;16:2609–25.

    Article  CAS  PubMed  Google Scholar 

  24. Dubey A, Prabhu P, Kamath JV. Nano structured lipid carriers: a novel topical drug delivery system. Int J PharmTech Res. 2012;4:705–14.

    CAS  Google Scholar 

  25. Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharmacy. 2015;53:147–59.

    Google Scholar 

  26. Iglesias G, Hlywka JJ, Berg JE, Khalil MH, Pope LE, Tamarkin D. The toxicity of behenyl alcohol I. Genotoxicity and subchronic toxicity in rats and dogs. Regul Toxicol Pharmacol. 2002;36:69–79.

    Article  CAS  PubMed  Google Scholar 

  27. Iglesias G, Hlywka JJ, Berg JE, Khalil MH, Pope LE, Tamarkin D. The toxicity of behenyl alcohol II. Reproduction studies in rats and rabbits. Regulatory Toxicol Pharmacol. 2002;36:80–5.

    Article  CAS  Google Scholar 

  28. Farboud ES, Nasrollahi SA, Tabbakhi Z. Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies. Int J Nanomedicine. 2011;6:611–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan H, Liu G, Huang Y, Li Y, Xia Q. Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of phenylethyl resorcinol. Appl Surf Sci. 2014;288:193–200.

    Article  CAS  Google Scholar 

  30. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innov Food Sci Emerg Technol. 2014;26:366–74.

    Article  CAS  Google Scholar 

  31. Shete H, Patravale V. Long chain lipid based tamoxifen NLC. Part I: preformulation studies, formulation development and physicochemical characterization. Int J Pharm. 2013;454:573–83.

    Article  CAS  PubMed  Google Scholar 

  32. Tsai MJ, Wu PC, Bin Huang Y, Chang JS. Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. Int J Pharm. 2012;423:461–70.

    Article  CAS  PubMed  Google Scholar 

  33. Tita B, Ledeti I, Bandur G, Tita D. Compatibility study between indomethacin and excipients in their physical mixtures. J Therm Anal Calorim. 2014;118:1293–304.

    Article  CAS  Google Scholar 

  34. Meerloo JV, Kaspers GJL, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.

    Article  PubMed  Google Scholar 

  35. Angius F, Floris A. Liposomes and MTT cell viability assay: an incompatible affair. Toxicol Vitr. 2015;29:314–9.

    Article  CAS  Google Scholar 

  36. Halim SZ, Abdullah NR, Afzan A, Rashid BAA, Jantan I, Ismail Z. Acute toxicity study of Carica papaya leaf extract in Sprague Dawley rats. J Med Plants Res. 2011;5:1867–72.

    Google Scholar 

  37. Verma RK, Garg S. Compatibility studies between isosorbide mononitrate and selected excipients used in the development of extended release formulations. J Pharm Biomed Anal. 2004;35:449–58.

    Article  CAS  PubMed  Google Scholar 

  38. Manikandan M, Kannan K, Manavalan R. Compatibility studies of camptothecin with various pharmaceutical excipients used in the development of nanoparticle formulation. Int J Pharm Sci. 2013;5:315–21.

    CAS  Google Scholar 

  39. Tompa AS, Bryant WF. Microcalorimetry and DSC study of the compatibility of energetic materials. Thermochim Acta. 2001;367–368:433–41.

    Article  Google Scholar 

  40. Balestrieri F, Magri AD, Magri AL, Marini D, Sacchini A. Application of differential scanning calorimetry to the study of drug-excipient compatibility. Thermochim Acta. 1996;285:337–45.

    Article  CAS  Google Scholar 

  41. Łaszcz M, Kosmacińska B, Korczak K. Study on compatibility of imatinib mesylate with pharmaceutical excipients. J Therm Anal Calorim. 2007;88:305–10.

    Article  Google Scholar 

  42. Mallik S, Kshirsagar MD, Saini V. Studies on physical/chemical compatibility between synthetic and herbal drugs with various pharmaceutical excipients. Der Pharm Lett. 2011;3:173–8.

    CAS  Google Scholar 

  43. Zambiazi RC, Przybylski R, Zambiazi MW, Mendonça CB. Fatty acid composition of vegetable oils and fats. Bol do Cent Pesqui e Process Aliment. 2007;25:111–20.

    CAS  Google Scholar 

  44. Dixit S, Das M. Fatty acid composition including trans-fatty acids in edible oils and fats: probable intake in Indian population. J Food Sci. 2012;77:10.

    Article  Google Scholar 

  45. Sagiri SS, Sharma V, Basak P, Pal K. Mango butter emulsion gels as cocoa butter equivalents: physical, thermal, and mechanical analyses. J Agric Food Chem. 2014;62:11357–68.

    Article  CAS  PubMed  Google Scholar 

  46. Abdalla AEM, Darwish SM, Ayad EHE, El-Hamahmy RM. Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chem. 2007;103:1134–40.

    Article  CAS  Google Scholar 

  47. Akhter S, McDonald MA, Marriott R. Mangifera sylvatica (wild mango): a new cocoa butter alternative. Sci Rep. 2016;6:32050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abdalla AEM, Darwish SM, Ayad EHE, El-Hamahmy RM. Egyptian mango by-product 2: antioxidant and antimicrobial activities of extract and oil from mango seed kernel. Food Chem. 2007;103:1141–52.

    Article  CAS  Google Scholar 

  49. O’Neill CM, Gill S, Hobbs D, Morgan C, Bancroft I. Natural variation for seed oil composition in Arabidopsis thaliana. Phytochemistry. 2003;64:1077–90.

    Article  PubMed  Google Scholar 

  50. Hwang RJ, Ahmed AS, Moldowan JM. Oil composition variation and reservoir continuity: Unity Field, Sudan. Org Geochem. 1994;21:171–88.

    Article  CAS  Google Scholar 

  51. Ali Z, Siddiqui HL, Waheed A, Mahmood S. Distribution of fatty acids in triacylglycerols from ungrafted Desi mango (Mangifera indica) kernel lipids. J Saudi Chem Soc. 2011;15:67–72.

    Article  CAS  Google Scholar 

  52. Pena Muniz MA, Ferreira Dos Santos MN, da Costa CE, Morais L, Lamarão ML, Ribeiro-Costa RM, Silva-Júnior JO. Physicochemical characterization, fatty acid composition, and thermal analysis of Bertholletia excelsa HBK oil. Pharmacogn Mag. 2015;11:147–51.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ibeto CN, Okoye COB, Ofoefule AU. Comparative study of the physicochemical characterization of some oils as potential feedstock for biodiesel production. ISRN Renew Energy. 2012;2012:1–5.

    Article  Google Scholar 

  54. Sidohounde A, Guevara N. Physico-chemical characterization of vegetable oil and defatted meal from two varieties of Cyperus esculestus from Benin. Chem J. 2015;4:1–7.

    Google Scholar 

  55. Sciences C. Physicochemical characterization and frying quality of canola and sunflower oil samples. J Chem Soc Pak. 2012;34:513–7.

    Google Scholar 

  56. Emami J, Rezazadeh M, Varshosaz J, Tabbakhian M, Aslani A. Formulation of LDL targeted nanostructured lipid carriers loaded with paclitaxel: a detailed study of preparation, freeze drying condition, and in vitro cytotoxicity. J Nanomater. 2012;2012:1–10.

    Article  Google Scholar 

  57. Andalib S, Varshosaz J, Hassanzadeh F, Sadeghi H. Optimization of LDL targeted nanostructured lipid carriers of 5-FU by a full factorial design. Adv Biomed Res. 2012;1:45.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Croci T, Landi M, Emonds-Alt X, Le Fur G, Maffrand JP, Manara L. Role of tachykinins in castor oil diarrhoea in rats. Br J Pharmacol. 1997;121:375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tunaru S, Althoff TF, Nusing RM, Diener M, Offermanns S. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors. Proc Natl Acad Sci U S A. 2012;109:9179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang Y, Li J, Wu Z, Liu E. Acute and long-term toxicity of mango leaves extract in mice and rats, evidence-based complement. Altern Med. 2014;2014:691574.

    Google Scholar 

  61. Shah KA, Patel MB, Patel RJ, Parmar PK. Mongifera indica (Mango). Pharmacogn Rev. 2010;4:42–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Newton MJ, Kaur B (2016) Impact of Pluronic F-68 vs Tween 80 on fabrication and evaluation of acyclovir SLNs for skin delivery. Recent Pat Drug Deliv Formul.

  63. Riss TL, Niles AL, Minor L. Cell viability assays assay guidance manual. Assay Guid Man. 2004:1–23.

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Department of Biotechnology, Ministry of Science & Technology, Government of India, under Grant No. BT/504/NE/TBP/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay K Das.

Ethics declarations

The Institutional Animal Ethical Committee of Dibrugarh University India approved the experimental protocol (Approval No. IAEC/DU/120 dated Feb. 18, 2016)

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, T., Das, M.K. De Novo Approach to Utilize Mango (Mangifera indica L.) Seed Kernel Lipid in Pharmaceutical Lipid Nanoformulation. J Pharm Innov 12, 226–237 (2017). https://doi.org/10.1007/s12247-017-9284-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-017-9284-y

Keywords

Navigation