Skip to main content
Log in

Dynamic System Behaviour of Adsorbent-Filled Air Springs

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Due to growing demand for driving comfort in cars, Air Springs are increasingly being installed in upper mid-range segment. The stiffness of an Air Spring is significantly influenced by its enclosed air volume, larger volumes lead to softer spring systems. The decreasing installation space in modern car axles directly contradicts the demand for a higher level of comfort. Thus, development is faced with the challenge of integrating springs into ever smaller installation spaces. This results in the task of reducing the volume of Air Springs while maintaining the same required stiffness. One solution to make an air spring smaller is to insert an adsorbent. Adsorptive materials such as activated carbon, can bind additional amounts of air in their pores causing the springs to behave as if their effective volume had been increased. This way, softer properties can be achieved without changing the geometric dimensions of the spring. The insertion of adsorbents in Air Springs is relatively new which is why there have been few studies on this topic. Although this technology has been installed in commercially available vehicles, there are no relevant studies in the literature that describe the effectiveness of activated carbon in terms of Air Spring stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area, m2

A W :

effectiv surface, m2

c :

heat capacity, kJ/kgK

cv:

heat capacity of air as an ideal gas, kJ/kgK

d :

diameter, m

F :

force, N

f :

frequency, Hz

f DoF :

degrees of freedom

H :

entalphie, J

h :

specific enthalpie, J/kg

k :

spring stiffness, N/m

kA :

heat transfer coefficent, W/K

K0:

air spring length mounted, m

m :

mass, kg

n :

polytropic exponent of air

n mol :

amount of substance, mol

p :

pressure, Pa

p 0 :

internal pressure of the air spring at K0 length, Pa

p u :

ambient pressure, Pa

Q :

heat, J

q :

adsorbed air mass per kg of adsorbent, kg/kg

R :

universal gas constant, 8.314 J/molK

R S,air :

specific gas constant of air, J/kgK

s :

displacement, m

T :

temperature, K

t :

time, s

U :

internal energie, J

V :

volume, m3

V ads :

volume of adsorbed air, m3

V 0 :

volume of the air spring at K0 length, m3

W V :

volume change work, W

α :

heat transfer coefficien, W/m2K

ω e :

cutoff frequency, Hz

ads:

adsorption

air,free:

free airvolume

ges:

total

rot:

rotational

sorb:

adsorbens

trans:

translational

vib:

vibratory

AV:

additional volume

MC:

measurement chamber

SA:

sample

WI:

wall inside

References

  • Atkins, P. (2001). Physikalische Chemie. Wiley-VCH. Weinheim, Germany.

    Google Scholar 

  • Brandani, S., Mangano, E. and Sarkisov, L. (2016). Net, excess and absolute adsorption and adsorption of helium. Adsorption 22, 2, 261–276.

    Article  Google Scholar 

  • Coakley, J. and Elliot, A. (2017). Air Spring, U.S. Patent No. 9874330(B2).

  • Donau Carbon (2018). Aktivkohle und ihre Anwendung, [Online], Available from: https://www.donau-carbon.com/Downloads/aktivkohle.aspx

  • Eichler, M., Lion, A., Schuller, R. and Sonnak, U. (2003). Dynamik von Luftfedersystemen mit Zusatzvolumen: Modellbildung, Fahrzeugsimulationen und Potenzial. VDI-Bericht, 1791, 221–241.

    Google Scholar 

  • Europäisches Arzneibuch. (2014). 8. Ausgabe, Grundwerk 2014, Deutscher Apotheker Verlag.

  • Gumma, S. and Talu, O. (2010). Net adsorption: A thermodynamic framework for supercritical gas adsorption and storage in porous solids. Langmuir 26, 22, 17013–17023.

    Article  Google Scholar 

  • ISO 9277 (2014). Bestimmung von Isothermen und ermitteln von BET Oberflächen. ISO.

  • Job, G. and Rüffler, R. (2011). Physikalische Chemie: Eine Einführung nach neuem Konzept mit zahlreichen Experimenten. Vieweg+Teubner Verlag. Wiesbaden, Germany.

    Book  Google Scholar 

  • Joseph, Y. (2003). Spektroskopische Untersuchungen zur Oberflächenchemie von einkristallinen Eisenoxidfilmen. Ph. D. Dissertation. Freie Universität, Berlin, Germany.

    Google Scholar 

  • Kneer, A. (2014). Numerische Untersuchung des Wärmeübertragungsverhaltens in unterschiedlichen porösen Medien. KIT Scientific Publishing. Karlsruhe, Germany.

    Google Scholar 

  • Kretzschmar, H. J. and Kraft, I. (2007). Kleine Formelsammlung Technische Thermodynamik. Carl Hanser Verlag. München, Germany.

    Google Scholar 

  • Langeheinecke, L., Jany, P., Thieleke, G., Langeheinecke, K. and Kaufmann, A. (2013). Thermodynamik für Ingenieure. Springer Fachmedien. Wiesbaden, Germany.

    Book  Google Scholar 

  • Löcken, F. (2017). Für den Schwingungskomfort relevante Eigenschaften von Rollbalg-Luftfedern. Ph. D. Dissertation. Shaker Verlag. Düren, Germany.

    Google Scholar 

  • Löcken, F., Welsch, M., Mantwill, F. and Forke, T. (2013). Analytische und numerische Modellierung des dynamischen Steifigkeits- und Hystereseneffekts einer Luftfeder, Helmut-Schmidt-Universität Hamburg Forschungsbericht.

  • Marsh, H. and Rodríguez-Reinoso, F. (2006). Activated Carbon. Elsevier. Oxford, UK.

    Book  Google Scholar 

  • McLaughlin, P. (2004). Air Spring Heat Sink. U.S. Patent No. 0100005(A1).

  • Mersmann, A. (2005). Thermische Verfahrenstechnik. In Dubbel (pp. N11–N20). Springer. Berlin, Heidelberg, Germany.

    Google Scholar 

  • Pahl, H. (2002). Luftfedern in Nutzfahrzeugen, LFT Germany GmbH, Germany.

    Google Scholar 

  • Pelz, P., Groß, T. and Schänzle, C. (2017). Hydrospeicher mit Sorbentien-Verhalten, Modellierung und Diskussion. Ölhydraulik und Pneumatik, 1–2, 42–49.

    Google Scholar 

  • Puff, M. (2009). Entwicklung einer Prüfspezifikation zur Charakterisierung von Luftfedern. FAT — Schriftreihe 223; VDA.

  • Rouquerol, F., Rouquerol, J. and Sing, K. (1999). Adsorption by Powders & Porous Solids. Elsevier.

  • Schnabel, L. (2009). Experimentelle und numerische Untersuchung der Adsorptionskinetik von Wasser an Adsorbens-Metallverbundstrukturen. Ph. D. Dissertation. Startseite Institut für Energietechnik. Dresden, Germany.

    Google Scholar 

  • Shen, F., Liu, H., Xu, D., Zhang, H., Lu, J. and Li, L. (2017). Cryogenic adsorption of nitrogen and carbon dioxide in activated carbon. J. Physics: Conf. Series 897, 1, 012012.

    Google Scholar 

  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57, 4, 603–619.

    Article  Google Scholar 

  • Strehlow, R. (1995). Grundzüge der Physik, Für Naturwissenschaftler und Ingenieure, Vieweg+ Teubner Verlag. Wiesbaden. Germany.

    Google Scholar 

  • Tamari, S. (2004). Optimum design of the constant-volume gas pycnometer for determining the volume of solid particles. Measurement Science and Technology, 15, 549–558.

    Article  Google Scholar 

  • TrelleborgVibracoustic. (2015). Schwingungstechnik im Automobil: Grundlagen, Werkstoffe, Konstruktion, Berechnung und Anwendungen. 1st edn. Vogel Business Media GmbH & Co. KG. Würzburg, Germany.

    Google Scholar 

Download references

Acknowledgement

The authors would like to express their thanks to Vibracoustic SE & Co. KG, especially Mr Koos, Mr Zeeck and the Air Spring Division for their cooperation as well as for their support of the research project in terms of content and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Mantwill.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantwill, F., Breitenbach, S. & Sagert, A. Dynamic System Behaviour of Adsorbent-Filled Air Springs. Int.J Automot. Technol. 24, 483–492 (2023). https://doi.org/10.1007/s12239-023-0040-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-023-0040-7

Key Words

Navigation