Skip to main content

Advertisement

Log in

Spatial Distribution of Relict Inland Mangrove (Rhizophora mangle L.) in the San Pedro River Basin: A Transboundary Analysis between Mexico and Guatemala

  • Estuary and Coast Signatures
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Inland mangroves represent a unique ecosystem that develops away from coastal areas in response to specific environmental changes. Despite their ecological value, these ecosystems are often underestimated globally. Remote sensing (RS) techniques are widely used for large-scale monitoring of mangroves worldwide. This study aims to map mangrove relicts (Rhizophora mangle L.) in the Transboundary San Pedro River Basin (TSPRB), which spans Mexico and Guatemala, using RS and geographic information system (GIS) techniques. Field surveys were conducted to collect 419 ground points, distributed across the control (274 points) and verification (145 points), ensuring accurate classification of mangrove areas. To evaluate the performance of mangrove forest classification, we used composite images created from the red (B2), green (B3), blue (B4), and near-infrared (NIR) bands, along with the Normalized Difference Mangrove Index (NDMI). For this purpose, we applied the maximum likelihood classification (MLC) method, which effectively combines spectral information from composite images to achieve precise mangrove detection. The land cover classification was performed using Sentinel-2 from 2023 and the NDMI, achieving an accuracy of 80% and a Kappa Index of 0.73. The results show 2130.69 ha of mangroves along the San Pedro River. It includes 1868.38 ha in Mexico and 262.31 ha in Guatemala. In addition, areas were identified in Guatemala, where relict island mangroves are located the greatest distance from the coast worldwide (approximately 250 km). These findings highlight the ecological importance of mangrove ecosystems in this region and provide critical information for their management, conservation, and protection in the TSPRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data will be made available upon request.

References

  • Aburto-Oropeza, O., Burelo-Ramos, C. M., Ezcurra, E., Ezcurra, P., Henriquez, C. L., Vanderplank, S. E., & Zapata, F. (2021). Relict inland mangrove ecosystem reveals Last Interglacial sea levels. Proceedings of the National Academy of Sciences, 118(41), e2024518118. https://doi.org/10.1073/pnas.2024518118

    Article  CAS  Google Scholar 

  • Acosta-Velázquez, J., Ochoa-Gómez, J., Vázquez-Lule, A., & Guevara, M. (2023). Changes in mangrove coverage classification criteria could impact the conservation of mangroves in Mexico. Land Use Policy, 129, 106651. https://doi.org/10.1016/j.landusepol.2023.106651

    Article  Google Scholar 

  • Adamu, B., Rasul, A., Whanda, S. J., Headboy, P., Muhammed, I., & Maiha, I. A. (2021). Evaluating the accuracy of spectral indices from Sentinel-2 data for estimating forest biomass in urban areas of the tropical savanna. Remote Sensing Applications: Society and Environment, 22, 100484. https://doi.org/10.1016/j.rsase.2021.100484

    Article  Google Scholar 

  • Ahmad, A., & Quegan, S. (2012). Analysis of maximum likelihood classification technique on Landsat 5 TM satellite data of tropical land covers. In 2012 IEEE international conference on control system, computing and engineering (pp. 280–285). IEEE.

  • Akram, H., Hussain, S., Mazumdar, P., Chua, K. O., Butt, T. E., & Harikrishna, J. A. (2023). Mangrove health: A review of functions, threats, and challenges associated with mangrove management practices. Forests, 14(9), 1698. https://doi.org/10.3390/f14091698

    Article  Google Scholar 

  • Ali, A., & Nayyar, Z. A. (2020). Extraction of mangrove forest through Landsat 8 Mangrove Index (L8MI). Arabian Journal of Geosciences, 13, 1–12. https://doi.org/10.1007/s12517-020-06138-4

    Article  Google Scholar 

  • Bestelmeyer, B. T., & Alonso, L. E. (Eds.). (2000). A biological assessment of Laguna del Tigre National Park, Petén, Guatemala. RAP Bulletin of Biological Assessment 16, Conservation International.

  • Bihamta-Toosi, N., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & Waser, L. T. (2020). Land cover classification in mangrove ecosystems based on VHR satellite data and machine learning—an upscaling approach. Remote Sensing, 12, 2684. https://doi.org/10.3390/rs12172684

    Article  Google Scholar 

  • Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., ... & Rebelo, L. M. (2022). Global mangrove extent change 1996–2020: global mangrove watch version 3.0. Remote Sensing, 14(15), 3657. https://doi.org/10.3390/rs14153657

  • Castellanos, B. (ed). (2006). Plan Maestro Parque Nacional Laguna del Tigre y Biotopo Laguna del Tigre-Río Escondido. Guatemala. Consejo Nacional de Áreas Protegidas – CONAP. Alianza Kanteel. Wildlife Conservation Society (p. 168). https://conap.gob.gt/wp-content/uploads/2019/10/PM-PN-Laguna-del-Tigre-y-BP-Rio-Escondido.pdf

  • Chunyan, L., Hongqin, G., Xuehong, Z., & Jian, C. (2017). Combining decision trees with angle indices to identify mangrove forest at Shenzhen Bay, China. Journal of Resources and Ecology, 8(5), 545–549. https://doi.org/10.5814/j.issn.1674-764x.2017.05.012

    Article  Google Scholar 

  • CONANP (Comisión Nacional de Áreas Naturales Protegidas). (2023). Estudio Previo Justificativo para el establecimiento del Área Natural Protegida Reserva de la Biósfera Wanha’. Tabasco, México. 232 páginas. Incluyendo 4 anexos. https://www.conanp.gob.mx/pdf/separata/EPJ-RB-Wanha.pdf

  • Congalton, R. G. (2001). Accuracy assessment and validation of remotely sensed and other spatial information. International Journal of Wildland Fire, 10, 321–328.

    Article  Google Scholar 

  • DeYoe, H., Lonard, R. I., Judd, F. W., Stalter, R., & Feller, I. (2020). Biological flora of the tropical and subtropical intertidal zone: Literature review for Rhizophora mangle L. Journal of Coastal Research, 36(4), 857–884. https://doi.org/10.2112/JCOASTRES-D-19-00088.1

    Article  CAS  Google Scholar 

  • Estrada-Loreto, F., Barba Macías, E., & Ramos Reyes, R. (2013). Cobertura temporal de los humedales en la cuenca del Usumacinta, Balancán, Tabasco, México. Universidad y ciencia, 29(2), 141–151. de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0186-29792013000200004&lng=es&tlng=es. Accessed 26 Febraury 2024.

  • Estrada-Loreto, B. F. (2011). Indicadores ecológicos de la zona riparia del río San Pedro, Tabasco, México (Tesis de maestría, El Colegio de la Frontera Sur). https://ecosur.repositorioinstitucional.mx/jspui/handle/1017/1656. Accessed 25 Mar 2024.

  • FAO. (2023). The world’s mangroves 2000–2020. Rome. https://doi.org/10.4060/cc7044en

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. https://worldclim.org/version2. Accessed 15 Mar 2024.

  • Flores-de-Santiago, F., Rodríguez-Sobreyra, R., Álvarez-Sánchez, L. F., Valderrama-Landeros, L., Amezcua, F., & Flores-Verdugo, F. (2023). Understanding the natural expansion of white mangrove (Laguncularia racemosa) in an ephemeral inlet based on geomorphological analysis and remote sensing data. Journal of Environmental Management, 338, 117820. https://doi.org/10.1016/j.jenvman.2023.117820

    Article  Google Scholar 

  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4

    Article  Google Scholar 

  • Friess, D. A., Adame, M. F., Adams, J. B., & Lovelock, C. E. (2022). Mangrove forests under climate change in a 2°C world. Wires Climate Change, 13(4), e792. https://doi.org/10.1002/wcc.792

    Article  Google Scholar 

  • Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W., Hamilton, S. E., Lee, S. Y., ... & Shi, S. (2019). The state of the world’s mangrove forests: past, present, and future. Annual Review of Environment and Resources, 44(1), 89–115. https://doi.org/10.1146/annurev-environ-101718-033302

  • Friess, D. A., Adams, J., Andradi-Brown, D. A., Bhargava, R., Carrasco, G., Dahdouh-Guebas, F., ... & Wodehouse, D. (2024). Mangrove forests: their status, threats, conservation and restoration. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-323-90798-9.00031-7

  • Gallardo-Cruz, J. A., Peralta-Carreta, C., Solórzano, J. V., Fernández-Montes de Oca, A. I., Nava, L. F., Kauffer, E., & Carabias, J. (2021). Deforestation and trends of change in protected areas of the Usumacinta River basin (2000–2018), Mexico and Guatemala. Regional Environmental Change, 21, 1–15. https://doi.org/10.1007/s10113-021-01833-8

    Article  Google Scholar 

  • Gama-Campillo, L., Diaz López, H. M., Collado Torres, R., Valadez Treviño, M. E. M., Mata Zayas, E. E., & Figueroa Maheng, J. M. (2023). Implicaciones de la potencial elevación del nivel del mar para la población costera de Tabasco, México. Estudios Demográficos y Urbanos, 38(1), 283–320.

    Article  Google Scholar 

  • García, E. (1998). Modificaciones al sistema de clasificación de Köppen (p. 219). https://geoportal.conabio.gob.mx/metadatos/doc/html/clima1mgw.html

  • García-Troche, E. M., Morell, J. M., Meléndez, M., & Salisbury, J. E. (2021). Carbonate chemistry seasonality in a tropical mangrove lagoon in La Parguera, Puerto Rico. Plos One, 16(5), e0250069. https://doi.org/10.1371/journal.pone.0250069

    Article  CAS  Google Scholar 

  • Garzon-Lopez, C. X., Miranda, A., Moya, D., & Andreo, V. (2024). Remote sensing biodiversity monitoring in Latin America: Emerging need for sustained local research and regional collaboration to achieve global goals. Global Ecology and Biogeography, 33, e13804. https://doi.org/10.1111/geb.13804

    Article  Google Scholar 

  • Ghayour, L., Neshat, A., Paryani, S., Shahabi, H., Shirzadi, A., Chen, W., Al-Ansari, N., Geertsema, M., Pourmehdi Amiri, M., Gholamnia, M., et al. (2021). Performance evaluation of Sentinel-2 and Landsat 8 OLI data for land cover/use classification using a comparison between machine learning algorithms. Remote Sensing, 13, 1349. https://doi.org/10.3390/rs13071349

    Article  Google Scholar 

  • Gómez-Ruiz, P. A. (2024). Impactos negativos y positivos del cambio climático sobre los manglares: Las dos caras de una costosa moneda. Madera Y Bosques, 30(4), e3042623. https://doi.org/10.21829/myb.2024.3042623

    Article  Google Scholar 

  • Hellmuth, N., Sergio D’angelo Jerez, S. D., Lopez-Dobrusin, Morales-Rodriguez, Mendoza, V. (2024). Mangle Rojo (Rhizophora mangle) en las Riberas del Río San Pedro. Hurtado, V. y Valenzuela, A. (Edrs.). FLAAR Mesoamerica.

  • Hellmuth, N. (2021). Edible plants of Municipio de livingston from swamps, marshes, and seasonally inundated flatlands of Izabal. Díaz, V., y Valenzuela, A. (Edrs.). FLAAR Mesoamerica. Available in: https://flaar-mesoamerica.org/research-reports/red-mangrove-swamps-rhizophora-mangle/ Access date 21 March 2024.

  • Herrera-Silveira, J. A., Teutli-Hernandez, C., Secaira-Fajardo, F., Braun, R., Bowman, J., Geselbracht, L., Musgrove, M., Rogers, M., Schmidt, J., Robles-Toral, P. J., Canul-Cabrera, J. A., & Guerra-Cano, L. (2022). Daños a los manglares causados por huracanes. Técnicas y costos de reparación tras una tormenta. The Nature Conservancy, Arlington, Virginia. https://www.tncmx.org/content/dam/tnc/nature/en/documents/mexico/Danos_a_manglares_causados_por_huracanes2.pdf

  • Huxham, M., Dencer-Brown, A., Diele, K., Kathiresan, K., Nagelkerken, I., & Wanjiru, C. (2017). Mangroves and people: Local ecosystem services in a changing climate. In V. Rivera-Monroy, S. Lee, E. Kristensen, & R. Twilley (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective. Springer. https://doi.org/10.1007/978-3-319-62206-4_8

    Chapter  Google Scholar 

  • Instituto Nacional de Estadística y Geografía (INEGI). (2024). Biblioteca digital de mapas [Repositorio digital de mapas]. México. https://www.inegi.org.mx/app/mapas/default.html. Accessed 28 Mar 2024.

  • Instituto Nacional de Estadística Guatemala (INE). (2024). Población. Guatemala. https://www.ine.gob.gt/poblacion-menu/. Accessed 28 Mar 2024.

  • Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH). (2024). Guatemala C.A. Ríos de Guatemala [en línea]. Available in: https://insivumeh.gob.gt/hidrologia/rios%20de%20guate.htm Access date 26 Feb 2024.

  • ISRIC (International Soil Reference and Information Centre). (2020). Soilgrids datasets by ISRIC World Soil Information and licensed under CC-BY-4.0. https://soilgrids.org/. Accessed 27 Mar 2024.

  • Jackson, Q., & Landgrebe, D. A. (2002). An adaptive method for combined covariance estimation and classification. IEEE Transactions on Geoscience and Remote Sensing, 40(5), 1082–1087. https://doi.org/10.1109/TGRS.2002.1010895

    Article  Google Scholar 

  • Jian, Z., Ai, B., Zeng, J., & Sun, Y. (2024). A hybrid mangrove identification method by combining the time-frequency threshold of the Mangrove Index with a random forest binary classifier. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2024.3494058

    Article  Google Scholar 

  • Jiménez-López, D. A., Gallardo-Cruz, J. A., Véliz, M. E., Martínez-Camilo, R., Méndez, C., Solórzano, J. V., Velázquez-Méndez, L., Carabias, J., García-Hidalgo, G., Peralta-Carreta, C., Sánchez-González, M., Castillo-Acosta, O., Luna-Kamyshev, N. M., Villaseñor, J. L., & Meave, J. A. (2023). High vascular plant species richness in the Usumacinta River Basin: A comprehensive floristic checklist for a natural region in the Mesoamerican biodiversity hotspot. Botanical Sciences, 101(3), 908–930. https://doi.org/10.17129/botsci.3253

    Article  Google Scholar 

  • Kamal, M., Phinn, S., & Johansen, K. (2014). Characterizing the spatial structure of mangrove features for optimizing image-based mangrove mapping. Remote Sensing, 6(2), 984–1006. https://doi.org/10.3390/rs6020984

    Article  Google Scholar 

  • Kolli, M. K., Pham, Q. B., Thi Thuy Linh, N., Ngoc Hoai, P., Costache, R., & Anh, D. T. (2022). Assessment of change in the extent of mangrove ecosystems using different spectral indices in Google Earth Engine based on random forest model. Arabian Journal of Geosciences, 15(9), 889. https://doi.org/10.1007/s12517-022-10158-7

    Article  Google Scholar 

  • Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. Remote Sensing, 3(5), 878–928. https://doi.org/10.3390/rs3050878

    Article  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 159–174. https://doi.org/10.2307/2529310

  • Long, K., Chen, Z., Zhang, H., & Zhang, M. (2024). Spatiotemporal disturbances and attribution analysis of mangrove in southern China from 1986 to 2020 based on time-series Landsat imagery. Science of the Total Environment, 912, 169157. https://doi.org/10.1016/j.scitotenv.2023.169157

    Article  CAS  Google Scholar 

  • López-Portillo, J., Lewis, R. R., Saenger, P., Rovai, A., Koedam, N., Dahdouh-Guebas, F., ... & Rivera-Monroy, V. H. (2017). Mangrove forest restoration and rehabilitation. Mangrove ecosystems: A global biogeographic perspective: Structure, function, and services (pp. 301–345). https://doi.org/10.1007/978-3-319-62206-4_10

  • Lucas, R., Lule, A. V., Rodríguez, M. T., Kamal, M., Thomas, N., Asbridge, E., & Kuenzer, C. (2017). Spatial ecology of mangrove forests: A remote sensing perspective. In V. Rivera-Monroy, S. Lee, E. Kristensen, & R. Twilley (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective. Springer. https://doi.org/10.1007/978-3-319-62206-4_4

    Chapter  Google Scholar 

  • Lymburner, L., Bunting, P., Lucas, R., Scarth, P., Alam, I., Phillips, C., ... & Held, A. (2020). Mapping the multi-decadal mangrove dynamics of the Australian coastline. Remote Sensing of Environment, 238, 111185. https://doi.org/10.1016/j.rse.2019.05.004

  • Martínez-Camilo, R., Gallardo-Cruz, J. A., Solórzano, J. V., Peralta-Carreta, C., Jiménez-López, D. A., Castillo-Acosta, O., Sánchez-González, M., & Meave, J. A. (2020). An assessment of the spatial variability of tropical swamp forest along a 300 km long transect in the Usumacinta River Basin. Mexico. Forests, 11(12), 1238. https://doi.org/10.3390/f11121238

    Article  Google Scholar 

  • Maung, W. S., Tsuyuki, S., & Guo, Z. (2023). Improving land use and land cover information of Wunbaik mangrove area in Myanmar using U-Net model with multisource remote sensing datasets. Remote Sensing, 16(1), 76. https://doi.org/10.3390/rs16010076

    Article  Google Scholar 

  • Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: Mapping and monitoring of mangrove ecosystem—a review. Complex & Intelligent Systems, 7, 2797–2818. https://doi.org/10.1007/s40747-021-00457-z

    Article  Google Scholar 

  • Mitra, A. (2020). Ecosystem services of mangroves: an overview. In: Mangrove Forests in India: Exploring Ecosystem Services, 1–32. Springer, Cham. https://doi.org/10.1007/978-3-030-20595-9_1

  • Moreno-Cáliz, E., Zavala-Cruz J., Martínez-González R., & y Vázquez-Lule A. D. (2009). Caracterización del sitio de manglar Cascadas de Reforma, Balancán, en Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://www.conabio.gob.mx/conocimiento/manglares/doctos/caracterizacion/GM34_Cascadas_de_Reforma_Balancan_caracterizacion.pdf

  • Nakamura, W., Sasaki, J., Naing P.T., Endo, T., Mori, T., Furukawa, K., Ono, K., Fujimoto, K. (2023). Difference in water CO2 dynamics between riverine and fringe mangroves–a case study in subtropical mangroves. Preprints.org, https://doi.org/10.20944/preprints202306.0966.v1

  • Neres, J. N., Strenzel, G. M. R., Mielke, M. S., & Barros, F. (2024). Mangrove forest health condition from space and the use of in situ data. Marine Environmental Research, 201, 106704. https://doi.org/10.1016/j.marenvres.2024.106704

    Article  CAS  Google Scholar 

  • Orozco-Avila, A.A., Galeana-Pizaña, J.M., Núñez, J.M. (2024). Construction of a prospective scenario of land use and cover change for the Usumacinta River Basin, indispensable element for regional planning. In: Carlos-Martinez, H., Tapia-McClung, R., Moctezuma-Ochoa, D.A., Alegre-Mondragón, A.J. (eds) Recent Developments in Geospatial Information Sciences. iGISc 2023. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-031-61440-8_4

  • Osland, M. J., Feher, L. C., López-Portillo, J., Suman, D. O., Guzmán Menéndez, J. M., & Rivera-Monroy, V. H. (2018). Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuarine, Coastal and Shelf Science, 214, 120–140. https://doi.org/10.1016/j.ecss.2018.09.006

    Article  CAS  Google Scholar 

  • Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, S27–S31. https://doi.org/10.1016/j.jag.2009.11.002

    Article  Google Scholar 

  • Pandey, P. C., Anand, A., & Srivastava, P. K. (2019). Spatial distribution of mangrove forest species and biomass assessment using field inventory and earth observation hyperspectral data. Biodiversity and Conservation, 28, 2143–2162. https://doi.org/10.1007/s10531-019-01698-8

    Article  Google Scholar 

  • Perea-Ardila, M. A., & Murillo-Sandoval, P. J. (2024). Comparación de índices de vegetación basados en imágenes satelitales para la identificación de bosques de manglar en Colombia. Madera Y Bosques, 30(4). https://doi.org/10.21829/myb.2024.3042600

  • Pérez-Irungaray, G., & Gálvez-Ruano, J. (2022). Atributos territoriales y dinámicas socioambientales de Guatemala: Síntesis gráfico-Descriptiva. Perfil Ambiental de Guatemala, 2022 (p. 128). Universidad Rafael Landívar, Editorial Cara Parens, Guatemala. https://sie.url.edu.gt/urli2022_b3-e1/. Accessed 26 Mar 2024.

  • Pham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., & Friess, D. A. (2019). Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sensing, 11(3), 230. https://doi.org/10.3390/rs11030230

    Article  Google Scholar 

  • Pimple, U., Simonetti, D., Peters, R., Berger, U., Podest, E., & Gond, V. (2023). Enhancing monitoring of mangrove spatiotemporal tree diversity and distribution patterns. Land Degradation & Development, 34(5), 1265–1282. https://doi.org/10.1002/ldr.4537

    Article  Google Scholar 

  • Randhir, T. O., Toffling, K., & Griffin, C. R. (2024). Impacts of climate change and variability on the growth potential of global mangrove distribution. Sustainable and Resilient Infrastructure, 9(1), 63–71. https://doi.org/10.1080/23789689.2023.2253412

    Article  Google Scholar 

  • Rodríguez-Zúñiga, M. T., Troche-Souza, C., Cruz-López, M. I., & Rivera-Monroy, V. H. (2022). Development and structural organization of Mexico’s mangrove monitoring system (SMMM) as a foundation for conservation and restoration initiatives: A hierarchical approach. Forests, 13(4), 621. https://doi.org/10.3390/f13040621

    Article  Google Scholar 

  • Rodríguez-Zúñiga, M.T., Troche-Souza C., Vázquez-Lule, A. D., Márquez-Mendoza, J. D., Vázquez- Balderas, B., Valderrama-Landeros, L., Velázquez-Salazar, S., Cruz-López, M. I., Ressl, R., Uribe-Martínez, A., Cerdeira-Estrada, S., Acosta-Velázquez, J., Díaz-Gallegos, J., Jiménez-Rosenberg, R., Fueyo-Mac Donald, L. y Galindo-Leal, C. (2013). Manglares de México/Extensión, distribución y monitoreo. Comisión Nacional para el Conocimiento y Uso de la biodiversidad (p. 128). https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/Manglares2013_Indice.pdf

  • Ruiz-Luna, A., Acosta-Velázquez, J., & Berlanga-Robles, C. A. (2008). On the reliability of the data of the extent of mangroves: A case study in Mexico. Ocean & Coastal Management, 51(4), 342–351. https://doi.org/10.1016/j.ocecoaman.2007.08.004

    Article  Google Scholar 

  • Ruiz-Roldán, J. J., Blanco-Libreros, J. F., & López-Rodríguez, S. R. (2023). Mapeo de manglares utilizando cómputo en la nube y un índice espectral específico para apoyar acciones de manejo: Un caso del Caribe Colombiano semiárido. Ecosistemas: Revista Cietifica y Tecnica De Ecologia y Medio Ambiente, 32(3), 2599. https://doi.org/10.7818/ECOS.2599

    Article  Google Scholar 

  • Rundquist, D. C., Narumalani, S., & Narayanan, R. M. (2001). A review of wetlands remote sensing and defining new considerations. Remote Sensing Reviews, 20(3), 207–226. https://doi.org/10.1080/02757250109532435

    Article  Google Scholar 

  • Sandoval-Castro, E., Muniz-Salazar, R., Enríquez-Paredes, L. M., Riosmena-Rodríguez, R., Dodd, R. S., Tovilla-Hernández, C., & Arredondo-García, M. C. (2012). Genetic population structure of red mangrove (Rhizophora mangle L.) along the northwestern coast of Mexico. Aquatic Botany, 99, 20–26. https://doi.org/10.1016/j.aquabot.2012.01.002

    Article  Google Scholar 

  • Scholl, G., & Tomiczek, T. (2021, September). Wave dissipation through rigid vegetation. In OCEANS 2021: San Diego–Porto (pp. 1–7). IEEE. https://doi.org/10.23919/OCEANS44145.2021.9705872

  • Selvaraj, J. J., & Pérez, B. E. G. (2023b). Estimating mangrove aboveground biomass in the Colombian Pacific coast: a multisensor and machine learning approach. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e20745

  • Selvaraj, J. J., & Pérez, B. E. G. (2023). An enhanced approach to mangrove forest analysis in the Colombian Pacific coast using optical and SAR data in Google Earth Engine. Remote Sensing Applications: Society and Environment, 30, 100938. https://doi.org/10.1016/j.rsase.2023.100938

    Article  Google Scholar 

  • Servicio Geológico Mexicano (SGM). (2020). [GeoInfoMex en 3D]. https://www.sgm.gob.mx/GeoInfoMex3D/. Accessed 21 Mar 2024.

  • Shi, T., Liu, J., Hu, Z., Liu, H., Wang, J., & Wu, G. (2016). New spectral metrics for mangrove forest identification. Remote Sensing Letters, 7(9), 885–894. https://doi.org/10.1080/2150704X.2016.1195935

    Article  Google Scholar 

  • Tasneem, S., & Ahsan, M. N. (2024). A bibliometric analysis on mangrove ecosystem services: Past trends and emerging interests. Ocean & Coastal Management, 256, 107276. https://doi.org/10.1016/j.ocecoaman.2024.107276

    Article  Google Scholar 

  • Thanh Noi, P., & Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18, 18. https://doi.org/10.3390/s18010018

    Article  Google Scholar 

  • Valderrama-Landeros, L., Flores-Verdugo, F., Rodríguez-Sobreyra, R., Kovacs, J. M., & Flores-de-Santiago, F. (2021). Extrapolating canopy phenology information using Sentinel-2 data and the Google Earth Engine platform to identify the optimal dates for remotely sensed image acquisition of semiarid mangroves. Journal of Environmental Management, 279, 111617. https://doi.org/10.1016/j.jenvman.2020.111617

    Article  Google Scholar 

  • Valderrama-Landeros L. H., Rodríguez-Zúñiga M.T., Troche-Souza C., Velázquez-Salazar, S., Villeda-Chávez, E., Alcántara-Maya, J.A., Vázquez-Balderas B., Cruz-López M. I., Ressl R., (2017). Manglares de México: actualización y exploración de los datos del sistema de monitoreo 1970/1980–2015. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (p. 128). https://bioteca.biodiversidad.gob.mx/janium/Documentos/12889.pdf

  • Velázquez-Salazar S., Rodríguez-Zúñiga M.T., Alcántara-Maya J.A., Villeda-Chávez E., Valderrama-Landeros L., Troche-Souza C., Vázquez-Balderas B., Pérez-Espinosa I., Cruz-López M. I., Ressl R., De la Borbolla D. V. G., Paz O., Aguilar-Sierra V., Hruby F. y Muñoa-Coutiño J. H. (2021). Manglares de México. Actualización y análisis de los datos 2020. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (p. 168). https://bioteca.biodiversidad.gob.mx/janium-bin/detalle.pl?Id=20250127090618

  • Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231, 111223. https://doi.org/10.1016/j.rse.2019.111223

    Article  Google Scholar 

  • Wang, D., Wan, B., Qiu, P., Tan, X., & Zhang, Q. (2022). Mapping mangrove species using combined UAV-LiDAR and Sentinel-2 data: Feature selection and point density effects. Advances in Space Research, 69(3), 1494–1512. https://doi.org/10.1016/j.asr.2021.11.020

    Article  Google Scholar 

  • Ward, R. D., Friess, D. A., Day, R. H., & MacKenzie, R. A. (2016). Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosystem Health and Sustainability, 2(4), e01211. https://doi.org/10.1002/ehs2.1211

    Article  Google Scholar 

  • Winarso, G., Rosid, M. S., Kamal, M., Asriningrum, W., Margules, C., & Supriatna, J. (2023). Comparison of Mangrove Index (MI) and Normalized Difference Vegetation Index (NDVI) for the detection of degraded mangroves in Alas Purwo Banyuwangi and Segara Anakan Cilacap, Indonesia. Ecological Engineering, 197, 107119. https://doi.org/10.1016/j.ecoleng.2023.107119

    Article  Google Scholar 

  • Xu, P., Tsendbazar, N. E., Herold, M., de Bruin, S., Koopmans, M., Birch, T., ... & Zanaga, D. (2024). Comparative validation of recent 10 m-resolution global land cover maps. Remote Sensing of Environment, 311, 114316. https://doi.org/10.1016/j.rse.2024.114316

  • Yancho, J. M. M., Jones, T. G., Gandhi, S. R., Ferster, C., Lin, A., & Glass, L. (2020). The google earth engine mangrove mapping methodology (Geemmm). Remote Sensing, 12(22), 3758. https://doi.org/10.3390/rs12223758

    Article  Google Scholar 

  • Yasin, E. H., & Kornel, C. (2024). Evaluating satellite image classification: exploring methods and techniques. In Geographic Information Systems-Data Science Approach. IntechOpen. https://doi.org/10.5772/intechopen.1003196

  • Zamora-Tovar, C., Fierro-Cabo, A., & Requena-Lara, G. N. (2024). Agenda de investigación para el manejo sustentable del manglar en Tamaulipas, México. Madera Y Bosques, 30(4). https://doi.org/10.21829/myb.2024.3042615

  • Zhao, C., & Qin, C. Z. (2022). Identifying large-area mangrove distribution based on remote sensing: A binary classification approach considering subclasses of non-mangroves. International Journal of Applied Earth Observation and Geoinformation, 108, 102750. https://doi.org/10.1016/j.jag.2022.102750

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank San Pedro River’s riparian communities, especially William de Jesús Miss Dehara (Sueño de Oro, Tenosique) and Antonio Nahuath N. (Capitán Felipe Castellanos Díaz better known as San Pedro, Balancan), for their assistance and local knowledge during fieldwork: “It cannot discover (to claim or attribute) what was already discovered by them.” The authors also thank Msc. Rony A. García Anleu, Wildlife Conservation Society (WCS), and Sergio D’angelo Jerez, FLAAR Mesoamérica, for the information on the mangroves of Guatemala. We thank the anonymous reviewers for their comments and suggestions regarding this study. The authors also thank the Global Change and Sustainability Center (GCSC) for providing support and facilities for conducting this study. In addition, ORMP thanks the Researchers for Mexico program and the project Catedras-CCGS number 963 “Towards sustainable water management in southeastern Mexico and adjacent areas of Central America.”

Author information

Authors and Affiliations

Authors

Contributions

Software, validation, formal analysis, investigation, writing (original draft preparation, review, and editing), and visualization: C.P.C.; conceptualization, methodology, software, validation, formal analysis, investigation, writing (original draft preparation, review, and editing), and visualization: O.R.M.P.; conceptualization, methodology, software, validation, formal analysis, investigation, writing (original draft preparation, review, and editing), and visualization: A.A.A; formal analysis, investigation, and writing—review, editing: Q.B.P; support in field sampling: H.J.M.V. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ojilve Ramón Medrano-Pérez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Erik Yando

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peralta-Carreta, C., Medrano-Pérez, O.R., Alcudia-Aguilar, A. et al. Spatial Distribution of Relict Inland Mangrove (Rhizophora mangle L.) in the San Pedro River Basin: A Transboundary Analysis between Mexico and Guatemala. Estuaries and Coasts 48, 59 (2025). https://doi.org/10.1007/s12237-025-01492-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-025-01492-6

Keywords