Skip to main content

Advertisement

Log in

Population Structure of Osmunda regalis in Relation to Environment and Vegetation: An Example in the Mediterranean Area

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The structure of 42 natural populations of the endangered fern Osmunda regalis was studied at the southern limit of its European distribution. The aims were to i) investigate the population structures and status of the species; ii) test which local habitat and population characteristics correlate with the different population structures in the Mediterranean area; iii) evaluate which habitat types are suitable to support viable populations. The structure of populations is determined by the attribution of different stages of development of the sporophyte. This study documented the life-stage structure of O. regalis using an original classification of life stages that may be applicable to other fern populations with similar morphology. Using statistical analyses we distinguished: i) dynamic populations, which are characterized by a large proportion of sporelings and vegetative adults and are associated with streams and nemoral species; ii) stable populations, with a higher proportion of generative adults, growing prevalently in habitats rich in hygrophilous grasses and shrubs, with lower tree cover; iii) senile populations, with a relatively higher proportion of senescent individuals and with marked rejuvenation dominated by vegetative adults, which are prevalently located in spring swamps. The proportion of senescent stage individuals is positively correlated with the mean geographic distance between populations. Spring swamps, with populations that provide a clear example of remnant dynamics, are the habitat with the most stable conditions for O. regalis in the Mediterranean area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguraiuja R, Moora M, Zobel M (2004) Population stage structure of Hawaiian endemic fern taxa Diellia (Aspleniaceae); implications for monitoring and regional dynamics. Canad J Bot 82:1438–1445

    Article  Google Scholar 

  • Aguraiuja R, Zobel M, Zobel K, Moora M (2008) Conservation of the endemic fern lineage Diellia (Aspleniaceae) on the Hawaiin Island: can population structure indicate regional dynamics and endangering factors? Folia Geobot 43:3–18

    Article  Google Scholar 

  • Barkham JP (1980) Population dynamics of the wild daffodil (Narcissus pseudonarcissus). II. Changes in number of shoots and flowers, and the effect of bulb on growth and reproduction. J Ecol 68:635–664

    Article  Google Scholar 

  • Berry EJ, Gorchov DL, Endress BA, Stevens MHH (2008) Source-sink dynamics within a plant population: the impact of substrate and herbivory on palm demography. Populat Ecol 50:63–77

    Article  Google Scholar 

  • Brys R, Jacquemyn H, Endels P, Hermy M., De Blust G (2003) The relationship between reproductive success and demographic structure in remnant populations of Primula veris. Acta Oecol 24:247–253

    Article  Google Scholar 

  • Cascante-Marín A, Wolf JHD, Oostermeijer JGB, den Nijs JCM, Sanahuja O, Durán-Apuy A (2006) Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area. Basic Appl Ecol 7:520–532

    Article  Google Scholar 

  • Cinquemani Kuehn DM, Leopold DJ (1993) Habitat characteristics associated with Phyllitis scolopendrium (L.) Newm. var. americana Fern. (Aspleniaceae) in central New York. Bull Torrey Bot Club 120:310–318

    Article  Google Scholar 

  • Colling G (2005) Red list of the vascular plants of Luxembourg. Ferrantia 42, Luxembourg

  • Conti F, Manzi A, Pedrotti F (1997) Liste rosse regionali delle piante d’Italia. WWF, S.B.I., Camerino

    Google Scholar 

  • Cousens MI, Lacey DG, Scheller JM (1988) Safe sites and the ecological life history of Lorinseria areolat. Amer J Bot 75: 797–807

    Article  Google Scholar 

  • Czarnecka B (2008) Spatiotemporal patterns of genets and ramets in a population of clonal perennial Senecio rivularis: plant features and habitat effects. Ann Bot Fenn 45:19–32

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species. The need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Eckstein RL, Danihelka J, Hölzel N, Otte A (2004) The effects of management and environmental variation on population stage structure in three river-corridor violets. Acta Oecol 25:83–91

    Article  Google Scholar 

  • Elzinga CL, Salzer DW, Willoughby JW, Gibbs JP (2001) Monitoring plant and animal populations. Blackwell Science, Inc., Malden, Massachusetts

    Google Scholar 

  • Endels P, Jacquemyn H, Brys R, Hermy M (2004) Impact of management and habitat on demographic traits of Primula vulgaris in agricultural landscape. Appl Veg Sci 7:171–182

    Article  Google Scholar 

  • Falińska K (1995) Genet disintegration in Filipendula ulmaria: consequences for population dynamics and vegetation succession. J Ecol 83:9–21

    Article  Google Scholar 

  • Fernández H, Bertrand AM, Sánchez-Tamés R (1997) Gemmation in cultured gametophytes of Osmunda regalis. Pl Cell Rep 16:358–362

    Article  Google Scholar 

  • García D, Zamora R, Hódar JA, Gómez, JM (1999) Age structure of Juniperus communis L. in the Iberian peninsula: Conservation of remnant populations in Mediterranean mountains. Biol Conservation 87:215–220

    Article  Google Scholar 

  • García D, Zamora R, Hódar JA, Gómez JM, Castro J (2000) Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biol Conservation 95:31–38.

    Article  Google Scholar 

  • Gatsuk LE, Smirnova OV, Vorontzova LI, Zaugolnova LB, Zhukova LA (1980) Age states of plants of various growth forms: a review. J Ecol 68:675–696

    Article  Google Scholar 

  • Grime JP (1985) Factors limiting the contribution of pteridophytes to a local flora. Proc Roy Soc Edinburgh B, 86:403–421

    Google Scholar 

  • Hardalova R (2004) National report of Bulgaria. In Convention on the Conservation of European Wildlife and Natural habitats, Group of experts on the conservation of plants. Valencia (Spain), 19 September 2004. National Reports. Council of Europe, Strasbourg

  • Harrison S, Maron J, Huxel G (2000) Regional turnover and fluctuation in populations of five plants confined to serpentine seeps. Conservation Biol 14:769–779

    Article  Google Scholar 

  • Hegland SJ, van Leeuwen M, Oostermeijer JGB (2001) Population structure of Salvia pratensis in relation to vegetation and management of Dutch dry floodplain grasslands. J Appl Ecol 38:1277–1289

    Article  Google Scholar 

  • Hooftman DAP, van Kleunen M, Diemer M (2003) Effects of habitat fragmentation on the fitness of two common wetland species, Carex davalliana and Succisa pratensis. Oecologia 134:350–359

    PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Hermy M (2002) Patch occupancy, population size and reproductive success of a forest herb (Primula elatior) in a fragmented landscape. Oecologia 130:617–625

    Article  Google Scholar 

  • Jacquemyn H, Van Rossum F, Brys R, Endels P, Hermy M, Triest L, De Blust G (2003) Effects of agricultural land use and fragmentation on genetics, demography and population persistence of the rare Primula vulgaris, and implications for conservation. Belg J Bot 136:5–22

    Google Scholar 

  • Jäkäläniemi A, Tuomi J, Siikamäki P, Kilpiä A (2005) Colonization-extinction and patch dynamics of the perennial riparian plant, Silene tatarica. J Ecol 93:670–680

    Article  Google Scholar 

  • Klekowski EJ Jr (1967) Observations on pteridophyte life cycles: relative lengths under cultural conditions. Amer Fern J 57:49–51

    Article  Google Scholar 

  • Klekowski EJ Jr (1970) Populational and genetic studies of a homosporous fern-Osmunda regalis. Amer J Bot 57:1122–1138.

    Article  Google Scholar 

  • Klekowski EJ Jr (1973) Genetic load in Osmunda regalis populations. Amer J Bot 60:146–154

    Article  Google Scholar 

  • Landi M, Angiolini C (2007) Contributo alla conoscenza della distribuzione di Osmunda regalis L. in Toscana. Inform Bot Ital 39(1):113–122

    Google Scholar 

  • Landi M, Angiolini C (2008) Habitat characteristics and vegetation context of Osmunda regalis L. at the southern edge of its distribution in Europe. Bot Helv 118:43–55

    Article  Google Scholar 

  • Lavergne S, Molina J, Debussche M (2006) Fingerprints of environmental change on the rare Mediterranean flora: a 115-year study. Global Change Biol 12:1466–1478

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, Development in environmental modelling, 20. Ed. 2. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Lienert J, Diemer M, Schmid B (2002) Effects of fragmentation on structure and fitness components of the wetland specialist Swertia perennis L. (Gentianaceae). Basic Appl Ecol 3:101–114

    Article  Google Scholar 

  • Lloyd RM, Klekowski EJJr (1970) Spore germination and viability in pteridophyta: evolutionary significance of chlorophyllous spores. Biotropica 2:129–137

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) PCORD for Windows: Multivariate analysis of ecological data, Version 4.0. MjM Software, Gleneden Beach, Oregon

  • McVeigh I (1937) Vegetative reproduction of the fern sporophyte. Bot Rev 3:457–497

    Article  Google Scholar 

  • Menges ES (1990) Population viability analysis for an endangered plant. Conservation Biol 4:52–62

    Article  Google Scholar 

  • Menges E, Dolan RW (1998) Demographic viability of populations of Silene regia in midwestern prairies: relationships with fire management, genetic variation, geographic location, population size and isolation. J Ecol 86:63–78

    Article  Google Scholar 

  • Menges ES, Gordon DR (1996) Three levels of monitoring intensity for rare plant species. Nat Areas J 16:227–237

    Google Scholar 

  • Moora M, Kose M, Jõgar Ü (2007) Optimal management of the rare Gladiolus imbricatus in Estonian coastal meadows indicated by its population structure. Appl Veg Sci 10:161–168

    Article  Google Scholar 

  • Mróz L (2006) Variation in stage structure and fitness traits between road verge and meadow populations of Colchicum autumnale (Liliaceae): effects of habitat quality. Acta Soc Bot Poloniae 75:69–78

    Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley, New York

    Google Scholar 

  • Noest V, van der Maarel E, van der Meulten F, van der Loan D (1989) Optimum transformation of plant species cover abundance values. Vegetatio 83:167–178

    Article  Google Scholar 

  • Odland A (2007) Geographical variation in frond size, rootstock density, and sexual reproduction in Matteuccia struthiopteris populations in Norway. Populat Ecol 49:229–240

    Article  Google Scholar 

  • Odland A, Naujalis JR, Stapulionyte A (2006) Variation in the structure of Matteuccia struthiopteris populations in Lithuania. Biologija 1:83–90

    Google Scholar 

  • Oostermeijer JGB, van’t Ver R, den Nijs JCM (1994) Population structure of the rare, long-lived perennial Gentiana pneumonanthe in relation to vegetation and management in the Netherlands. J Appl Ecol 31:428–438

    Article  Google Scholar 

  • Page CN (2002) Ecological strategies in fern evolution: a neopteridological overview. Rev Palaeobot Palynol 119:1–33

    Article  Google Scholar 

  • Pichi Sermolli REG (1970) Appunti sulla costituzione e genesi della flora pteridologica delle Alpi Apuane. Lav Soc Ital Biogeogr 1:88–126

    Google Scholar 

  • Podani J, Miklós I (2002) Resemblance coefficients and the horseshoe effect in principal coordinates analysis. Ecology 83:3331–3343

    Article  Google Scholar 

  • Price EA, Marshall C (1999) Clonal plants and environmental heterogeneity. Pl Ecol 141: 3–7.

    Article  Google Scholar 

  • Rabotnov TA (1969) On coenopopulations of perennial herbaceous plants in natural coenoses. Vegetatio 19:87–95

    Google Scholar 

  • Rameau JC, Mansion D, Dumé G (1993) Flore forestière française: guide écologique illustré, 2. Institut pour le Développement Forestier, Paris

    Google Scholar 

  • Rünk K, Moora M, Zobel M (2006) Population stage structure of three congeneric Dryopteris species in Estonia. Proc Estonian Acad Sci Biol Ecol 55:15–30

    Google Scholar 

  • Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG (1994) Evaluating approaches to the conservation of rare and endangered species. Ecology 75:584–606

    Article  Google Scholar 

  • Shorina NI (2001) Population biology of gametophytes in homosporous polypodiophyta. Russ J Ecol 32:164–169

    Article  Google Scholar 

  • Smirnova OV, Palenova MM, Komarov AS (2002) Ontogeny of different life forms of plants and specific features of age and spatial structure of their populations. Russ J Developmental Biol 33:1–10

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Ed. 3. W.H, Freeman and Company, New York

    Google Scholar 

  • StatSoft Inc. (2001) STATISTICA (data analysis software system), version 6.0. Available at: http://www.statsoft.com

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination, Version 4.5. Microcomputer Power, Ithaca, New York

  • Tutin TG, Heywood VM, Burges NA, Valentine DH, Walters SM, Webb DA (1968) Flora Europaea. Cambridge University Press, Cambridge

    Google Scholar 

  • Tutin TG, Burges NA, Charter AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (1993) Flora Europea 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Voeller BR (1964) Antheridiogens in ferns. In Nitch JP (ed) Regulateurs naturels de la croissance végétale. Centre National de la Recherche Scientifique, Paris, pp 665–684

    Google Scholar 

  • Warner BG, Rubec CDA (eds) (1997) The Canadian wetland classification system. Ed. 2. Canadian National Wetlands Working Group, Wetlands Research Centre, University of Waterloo, Waterloo

  • Watson MA (1986) Integrated physiological units in plants. Trends Ecol Evol 1:119–123.

    Article  CAS  PubMed  Google Scholar 

  • Willmot A (1985) Population dynamics of woodland Dryopteris in Britain. Proc Roy Soc Edinburgh B, 86:307–313

    Google Scholar 

  • Wolf PG, Schneider H, Ranker TA (2001) Geographic distributions of homosporous ferns: does dispersal obscure evidence of vicariance? J Biogeogr 28:263–270

    Article  Google Scholar 

  • Zenkteler E (1999) Sporophytic Lethality in Lowland Populations of Osmunda regalis L. in Poland. Acta Biol Cracov, Ser Bot 41:75–83

    Google Scholar 

  • Zheleznaya EL (2009) Changes in the structure of a Dactylorhiza incarnata (L.) Soó population during the overgrowing of a meadow-bog community complex in the Moscow region. Russ J Ecol 40:39–43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Landi.

Additional information

Plant nomenclature

Tutin et al. (1968–1980)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landi, M., Angiolini, C. Population Structure of Osmunda regalis in Relation to Environment and Vegetation: An Example in the Mediterranean Area. Folia Geobot 46, 49–68 (2011). https://doi.org/10.1007/s12224-010-9086-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-010-9086-1

Keywords

Navigation