Skip to main content

Advertisement

Log in

Biofilms and nanoparticles: applications in agriculture

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A profound need to explore eco-friendly methods to practice sustainable agriculture leads to the research and exploration of plant growth-promoting rhizobacteria (PGPRs). Biofilms are assemblages of microbial communities within a self-secreted exopolymeric matrix, adhering to different biotic and abiotic surfaces and performing a variety of desired and undesired functions. Biofilm formation by PGPRs is governed by effective root colonization of the host plant in providing plant growth promotion and stress management. Biofilms can also provide a suitable environment for the synthesis and entrapment of nanoparticles. Together, nanoparticles and PGPRs may contribute towards biocontrol and crop management. This review discusses the significance of biofilms in agriculture and their confluence with different types of nanoparticles for plant protection and improved crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelmoteleb A, Valdez Salas B, CeceñaDuran C, Tzintzun Camacho O, Gutiérrez Miceli F, Grimaldo Juarez O, González Mendoza D (2017) Silver nanoparticles from prosopisglandulosa and their potential application as biocontrol of Acinetobacter calcoaceticus and Bacillus cereus. Chem Spec Bioavailab 29:1–5

    Article  CAS  Google Scholar 

  • Abee T, Kovács ÁT, Kuipers OP, van der Veen S (2011) Biofilm formation and dispersal in gram-positive bacteria. Curr Opin in Biotech 22:172–179

    Article  CAS  Google Scholar 

  • Ahmad YA, Arif MS, Mubin M, Rehman K, Shahzad SM, Iqbal S, Rizwan M, Ali S, Alyemeni MN, Wijaya L (2020) Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity. Plant Physiol Biochem 156:242–256

    Article  PubMed  Google Scholar 

  • Ali GS, Norman D, El-Sayed AS (2015) Soluble and volatile metabolites of plant growth-promoting rhizobacteria (PGPRs): Role and practical applications in inhibiting pathogens and activating induced systemic resistance (ISR). In: Bais H, Sherrier J (eds) Advances in Botanical Research, 75, Academic Press, pp 241–284

  • Ansari FA, Ahmad I (2019) Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep 9:4547

    Article  PubMed  PubMed Central  Google Scholar 

  • Artini M, Cicatiello P, Ricciardelli A, Papa R, Selan L, Dardano P, Tilotta M, Vrenna G, Tutino ML, Giardina P, Parrilli E (2017) Hydrophobin coating prevents Staphylococcus epidermidis biofilm formation on different surfaces. Biofouling 33:601–611

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of mucorhiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984

  • Babu AN, Jogaiah S, Ito SI, Nagaraj AK, Tran LSP (2015) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 231:62–73

    Article  Google Scholar 

  • Baelo A, Levato R, Julián E, Crespo A, Astola J, Gavaldà J, Torrents E (2015) Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release 209:150–158

    Article  CAS  PubMed  Google Scholar 

  • Bais HP (2004) Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasundararajan V, Dananjeyan B (2019) Occurrence of diversified N -acyl homoserine lactone mediated biofilm-forming bacteria in rice rhizoplane. J Basic Microbiol 59:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Vishakha K, Das S, Dutta M, Mukherjee D, Mondal J, Mondal S, Ganguli A (2020) Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus. Colloids Surf B: Biointerfaces 190:110921

    Article  CAS  PubMed  Google Scholar 

  • Banik S, Pérez-de-Luque A (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Spanish J Agric Res 15:e1005

    Article  Google Scholar 

  • Bjarnsholt T, Buhlin K, Dufrene YF et al (2018) Biofilm formation - What we can learn from recent developments. J Intern Med 284:332–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonebrake M, Anderson K, Valiente J, Jacobson A, McLean JE, Anderson A, Britt DW (2018) Biofilms benefiting plants exposed to ZnO and CuO nanoparticles studied with a root-mimetic hollow fiber membrane. J Agric Food Chem 66:6619–6627

    Article  CAS  PubMed  Google Scholar 

  • Byczyńska A (2017) Nano-silver as a potential biostimulant for plant - A review. WSN 86:180–192

    Google Scholar 

  • Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, Beyenal H (2011) Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol 13:1018–1031

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Huang H, Song W, Hu H, Chen J, Zhang L, Wu C (2015) Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro. Int J Pharm 495:728–737

    Article  CAS  PubMed  Google Scholar 

  • Chauhan H, Bagyaraj DJ, Selvakumar G, Sundaram SP (2015) Novel plant growth promoting rhizobacteria -Prospects and potential. Appl Soil Ecol 95:38–53

    Article  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2013) Bacillus subtilis and plant biocontrol. Environ Microbiol 15:848–864

    Article  PubMed  Google Scholar 

  • Chifiriuc MC, Grumezescu AM, Andronescu E, Ficai A, Cotar AI, Grumezescu V, Radulescu R (2013) Water dispersible magnetite nanoparticles influence the efficacy of antibiotics against planktonic and biofilm embedded Enterococcus faecalis cells. Anaerobe 22:14–19

    Article  CAS  PubMed  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  • Das S, Wolfson BP, Tetard L, Tharkur J, BazataJ SS (2015) Effect of N-acetyl cysteine coated CdS: Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies. Environ Sci Nano 2:203–212

    Article  CAS  Google Scholar 

  • Desmond P, Best JP, Morgenroth E, Derlon N (2018) Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Res 132:211–221

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Andrews J, Fugice J, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2020) Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front Plant Sci 11:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26:913–924

    Article  CAS  PubMed  Google Scholar 

  • Duncan B, Li X, Landis RF, Kim ST, Gupta A, Wang LS, Rotello VM (2015) Nanoparticle-stabilized capsules for the treatment of bacterial biofilms. ACS Nano 9:7775–7782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran N, Priscyla D, Marcato PD, Alves O, De Souza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–7

    Article  Google Scholar 

  • Ercan D, Demirci A (2015) Current and future trends for biofilm reactors for fermentation processes. Crit Rev Biotechnol 35:1–14

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotox Environ Safe 156:225–246

    Article  CAS  Google Scholar 

  • Feng J, Lamour G, XueR MMN, Hatzikiriakos SG, Xu J, Li H, Wang S, Lu X (2016) Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress. Int J Food Microbiol 238:172–182

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX, Sun PH (2004) Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol Control 29:66–72

    Article  Google Scholar 

  • Hassan SE-D, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM (2018) New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl Sc 11:262–270

    CAS  Google Scholar 

  • Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol R39:649–669

    Article  Google Scholar 

  • Holl F (1988) Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol Biochem 20:19–24

    Article  CAS  Google Scholar 

  • Itusha A, Osborne WJ, Vaithilingam M (2019) Enhanced uptake of Cd by biofilm forming Cd resistant plant growth promoting bacteria bioaugmented to the rhizosphere of Vetiveria zizanioides. Int J Phytorem 21:487–495

    Article  CAS  Google Scholar 

  • Jeandet P, Hébrard C, Deville M-A, Cordelier S, Dorey S, Aziz A, Crouzet J (2014) Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Mol 19:18033–18056

    Article  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy S, Prema RS (2015) Methods of synthesis of nano particles and its applications. J Chem Pharm Res 7:278–285

    CAS  Google Scholar 

  • Kang F, Alvarez PJ, Zhu D (2014) Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ Sci Tech 48:316–322

    Article  CAS  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61:217–227

    Article  Google Scholar 

  • Katiyar D, Hemantaranjan A, Singh B (2016) Plant growth promoting rhizobacteria-an efficient tool for agriculture promotion. Adv Plant Agric Res 4:00163

    Google Scholar 

  • Khan MM, Kalathil S, Han TH, Lee J, Cho MH (2013) Positively charged gold nanoparticles synthesized by electrochemically active biofilm- a biogenic approach. J Nanosci Nanotechnol 13:6079–6085

    Article  CAS  PubMed  Google Scholar 

  • Koo H, Allan R, Howlin R et al (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat R Microbiol 15:740–755

    Article  CAS  Google Scholar 

  • Kragh KN, Hutchison JB, Melaugh G, Rodesney C, Roberts AEL, Irie Y, Bjarnsholt T (2016) Role of multicellular aggregates in biofilm formation. mBio 7: e00237–16

  • Kroll A, Behra R, Kaegi R, Sigg L (2014) Extracellular polymeric substances (eps) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles. PLoS ONE 9:e110709

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LewisOscar F, MubarakAli D, Nithya C, Priyanka R, Gopinath V, Alharbi NS, Thajuddin N (2015) One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 31:379–391

    Article  CAS  PubMed  Google Scholar 

  • Li S-W, Zhang X, Sheng G-P (2016) Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria. Environ Sci Pollut Res 23:8627–8633

    Article  CAS  Google Scholar 

  • Li XZ, Hauer B, Rosche B (2007) Single-species microbial biofilm screening for industrial applications. Appl Microbiol Biotechnol 76:1255–1262

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Juanni C, Zhongwei L, Hancheng W, Huikuan Y, Wei D (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:790

    Article  Google Scholar 

  • Lin IW-S, Lok C-N, Che C-M (2014) Biosynthesis of silver nanoparticles from silver(I) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chem Sci 5:3144–3150

    Article  CAS  Google Scholar 

  • Lindsay D, von Holy A (2006) Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect 64:313–325

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Naha PC, Hwang G, Kim D, Huang Y, Simon-Soro A, Koo H (2018) Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat Commun 9:1–12

    Google Scholar 

  • Mahawar H, Prasanna R, Gogoi R et al (2020) Synergistic effects of silver nanoparticles augmented Calothrix elenkinii for enhanced biocontrol efficacy against Alternaria blight challenged tomato plants. 3 Biotech 10:102

  • Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation. Sci Total Environ 610–611:1239–1250

    Article  PubMed  Google Scholar 

  • Mohammed AF (2018) Effectiveness of exopolysaccharides and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). African J Microbiol Res 12:399–404

    Article  CAS  Google Scholar 

  • More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage 144:1–25

    Article  CAS  PubMed  Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  • Nawaz N, Bano A (2019) Effects of PGPR (Pseudomonas sp.) and Ag-nanoparticles on enzymatic activity and physiology of cucumber. Recent Pat Food Nutr Agric 10:1

  • Nevius BA, Chen YP, Ferry JL, Decho AW (2012) Surface-functionalization effects on uptake of fluorescent polystyrene nanoparticles by model biofilms. Ecotoxicol 21:2205–2213

    Article  CAS  Google Scholar 

  • Ng CK, Mohanty A, Cao B (2015) Biofilms in bio nanotechnology. In: Singh OV (ed) Bio Nanoparticles. Wiley Blackwell, USA, pp 83–100

    Google Scholar 

  • Niederdorfer R, Peter H, Battin TJ (2016) Attached biofilms and suspended aggregates are distinct microbial lifestyles emanating from differing hydraulics. Nat Microbiol 1:16178

    Article  CAS  PubMed  Google Scholar 

  • Nima AZ, Lahiani MH, Watanabe F, Xu Y, Khodakovskaya MV, Biris AS (2014) Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Adv 4:64985–64993

    Article  CAS  Google Scholar 

  • Ono K, Oka R, Toyofuku M, Sakaguchi A, Hamada M, Yoshida S, Nomura N (2014) cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1. Microbes Environ 29:104–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew Sust Energ Rev 81:536–551

    Article  CAS  Google Scholar 

  • Palmqvist NGM, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:1–12

    Article  Google Scholar 

  • Pangesti N, Reichelt M, van de Mortel JE et al (2016) Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. J Chem Ecol 42:1212–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel TS, Minocheherhomji FP (2018) Review: plant growth promoting rhizobacteria: blessing to agriculture. Int J Pure Appl Biosci 6:481–492

    Article  Google Scholar 

  • Pathania P, Bhatia R, Khatri M (2020a) Cross-competence and affectivity of maize rhizosphere bacteria Bacillus sp. MT7 in tomato rhizosphere. Sci Hortic 272:109480

  • Pathania P, Rajta A, Singh PC, Bhatia R (2020b) Role of plant growth-promoting bacteria in sustainable agriculture. Biocat Agric Biotechnol 30:101842

  • Paulucci NS, Gallarato LA, Reguera YB, Vicario JC, Cesari AB, García de Lema MB, Dardanelli MS (2015) Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiol Res 173:1–9

    Article  CAS  PubMed  Google Scholar 

  • Pelegrino MT Kohatsu, MY Seabra AB et al (2020) Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environ Monit Assess 192:232

  • Pereira AdES, Oliveira HC, Fraceto LF (2019) Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Sci Rep 9:7135

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira AdES, Narciso AM, Seabra AB, Fraceto LF (2015) Evaluation of the effects of nitric oxide-releasing nanoparticles on plants. 4th International Conference on Safe Production and Use of Nanomaterials (Nanosafe 2014). J Phys Conf Ser 617:011001

  • Perez K, Patel R (2015) Biofilm-like aggregation of Staphylococcus epidermidis in synovial fluid. J Infect Dis 212:335–336

    Article  PubMed  PubMed Central  Google Scholar 

  • Peulen T-O, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45:3367–3373

    Article  CAS  PubMed  Google Scholar 

  • Pour MM, Saberi-Riseh R, Mohammadinejad R, Hosseini A (2019) Nano-encapsulation of plant growth-promoting rhizobacteria and their metabolites using alginate-silica nanoparticles and carbon nanotube improves UCB1 pistachio micropropagation. J Microbiol Biotechnol 29:1096–1103

    Article  PubMed  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26:523–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Zhang J, Li B, Wen X, Liang P, Huang X (2018) A novel microfluidic system enables visualization and analysis of antibiotic resistance gene transfer to activated sludge bacteria in biofilm. Sci Total Environ 642:582–590

    Article  CAS  PubMed  Google Scholar 

  • Rangaraj S, Gopalu K, Muthusamy P, Rathinam Y, Venkatachalam R, Narayanasamy K (2014) Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Advances 4:8461

  • Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P (2013) Review article; scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 1:041–044

    Google Scholar 

  • Rekadwad BN, Khobragade CN (2017) Microbial biofilm: role in crop productivity. Microb Applications 2:107–118

    Article  Google Scholar 

  • Ricci E, Schwinghamer T, Fan D, Smith DL, Gravel V (2019) Growth promotion of greenhouse tomatoes with Pseudomonas sp. and Bacillus sp. biofilms and planktonic cells. Appl Soil Ecol 138:61–68

    Article  Google Scholar 

  • Rinaudi LV, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11

    Article  CAS  PubMed  Google Scholar 

  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Bais HP (2007) Arabidopsis thaliana root surface chemistry regulates in planta biofilm formation of Bacillus subtilis. Plant Signal Behav 2:349–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabet H, Mortazaeinezhad F (2018) Yield, growth and Fe uptake of cumin (Cuminum cyminum L.) affected by Fe-nano, Fe-chelated and Fe-siderophore fertilization in the calcareous soils. J Trace Elem Med Bio 50:154–160

    Article  CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc Oxide Nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 925494:1–8

    Article  Google Scholar 

  • Salama Y, Chennaoui M, Sylla A, Mountadar M, Rihani M, Assobhei O (2015) Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review. Desalin Water Treat 57:16220–16237

    Article  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne G, Jayasekara APDA, De Silva MSDL, Abeysekera UP (2011) Developed microbial biofilms can restore deteriorated conventional agricultural soils. Soil Biol Biochem 43:1059–1062

    Article  CAS  Google Scholar 

  • Shah T, Munsif F, D’amato R, Nie L, (2020) Lead toxicity induced phytotoxic impacts on rapeseed and clover can be lowered by biofilm forming lead tolerant bacteria. Chemosphere 246:125766

    Article  CAS  PubMed  Google Scholar 

  • Sheng G-P, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol Adv 28:882–894

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Siddiqui ZA (2014) Effects of Bacillus subtilis, Pseudomonas fluorescens and Aspergillus awamori on the wilt-leaf spot disease complex of tomato. Phytoparasitica 43:61–75

    Article  Google Scholar 

  • Silva Mdos S, Cocenza DS, Grillo R, Melo NFS, deTonello PS, de Oliveira LC, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374

    Article  PubMed  Google Scholar 

  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Ma S, Leonhard M, Moser D, Ludwig R, Schneider-Stickler B (2020) Co-immobilization of cellobiose dehydrogenase and deoxyribonuclease I on chitosan nanoparticles against fungal/bacterial polymicrobial biofilms targeting both biofilm matrix and microorganisms. Mater Sci Eng C 108:110499

    Article  CAS  Google Scholar 

  • Tang T, Peng N, Zheng S, Wang J (2013) Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. Int J Nanomedicine 8:3093–3105

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas S, Harshita BSP, Mishra P, Talegaonkar S (2015) Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des 21:6165–6188

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9:e96086

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Seisenbaeva G, Behers L (2018) Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci Rep 8:617

    Article  PubMed  PubMed Central  Google Scholar 

  • Triveni S, Prasanna R, Shukla L et al (2013) Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants. Ann Microbiol 63:1147–1156

    Article  CAS  Google Scholar 

  • ÜnalTurhan E, Erginkaya Z, Korukluoğlu M, Konuray G (2019) Beneficial biofilm applications in food and agricultural industry. In: Malik A, Erginkaya Z, Erten H (eds) Health and Safety Aspects of Food Processing Technologies. Springer, Cham

  • Velmourougane K, Prasanna R, Saxena AK (2017) Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 57:548–573

    Article  PubMed  Google Scholar 

  • Vetchinkina E, Loshchinina E, Kupryashina M, Burov A, Pylaev T, Nikitina V (2018) Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ 6:e5237

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidotti M, Carvalhal RF, Mendes RK, Ferreira DCM, Kubota LT (2011) Biosensors based on gold nanostructures. J Brazilian Chem Soc 22:3–20

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5:4866–4883

    Article  CAS  Google Scholar 

  • Vishwakarma K, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2019) Silicon and plant growth promoting rhizobacteria differentially regulate AgNP-induced toxicity in Brassica juncea: Implication of nitric oxide. J Hazard Mater 390:121806

    Article  PubMed  Google Scholar 

  • Wang DC, Jiang CH, Zhang LN, Chen L, Zhang XY, Guo JH (2019) Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants. Int J Mol Sci 20:6271

    Article  CAS  PubMed Central  Google Scholar 

  • Wang D, Xu A, Elmerich C, Ma LZ (2017) Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. ISME J 11:1602–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt M, Hugenholtz P, White R, Vinall K (2006) Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environ Microbiol 8:871–884

    Article  PubMed  Google Scholar 

  • Webster TJ (2009) The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Int J Nanomedicine 4:145–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaron S, Römling U (2014) Biofilms of human pathogens on plants. Microb Biotech 7:496–516

    Article  Google Scholar 

  • Yaryura PM, León M, Correa OS, Kerber NL, Pucheu NL, García AF (2008) Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Curr Microbiol 56:625–632

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Zhang N, Huang Q et al (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5:13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2013) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Bhatia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, R., Gulati, D. & Sethi, G. Biofilms and nanoparticles: applications in agriculture. Folia Microbiol 66, 159–170 (2021). https://doi.org/10.1007/s12223-021-00851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-021-00851-7

Navigation