Skip to main content
Log in

The effects of thiamine inhibition on ruminal fermentation: a preliminary study

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Inhibition of methanogenesis in ruminal cultures was attempted by hindering thiamine availability through its degradation by ‘polyphenols’ and competition for active sites on enzymes and transporters using thiamine structural analogs. Effects on fermentation were small and not consistently reversed by adding thiamine. Lack of major effects of the compounds evaluated could be due to intracellular synthesis of thiamine covering most requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CP:

crude protein

SEM:

standard error of the mean

DM:

dry matter TPP thiamine diphosphate

HPLC:

high performance liquid chromatography

VFA:

volatile fatty acid

NDF:

neutral detergent fiber

References

  • Alvarez M.A., Debattista N.B., Pappano N.B.: Antimicrobial activity and synergism of some substituted flavanoids. Folia Microbiol.53, 23–28 (2008).

    Article  CAS  Google Scholar 

  • Alves De Oliveira L., Jean-Blain C., Komisarczuk-Bony S., Durix A., Durier C.: Microbial thiamine metabolism in the rumen simulating fermenter (Rusitec): the effect of acidogenic conditions, a high sulfur level and added thiamine. Brit.J.Nutr.78, 599–613 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Fukui S., Ohishi O., Kishimoto S., Takamizawa A., Hamazima Y.: Formation of “thiaminosuccinic acid” as an intermediate in the transformation of oxythiamine to thiamine by a thiamineless mutant of Escherichia coli. J.Biol.Chem.240, 1315–1321 (1965).

    PubMed  CAS  Google Scholar 

  • Goering H.K., Van Soest P.N.:Forage Fiber Analyses (Apparatus, Reagents, Procedures and Some Applications). Agricultural Handbook 379. ARS-USDA, US Government Printing Office, Washington (DC) 1975.

    Google Scholar 

  • Harmeyer J., Kollenkirchen U.: Thiamine and niacin in ruminant nutrition. Nutr.Res.Rev.2, 201–225 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Heitmann R.N., Taka M.R.Y.: An in vitro study of the effects of amprolium in the rumen. Mesopotamia J.Agric.5–6, 32–40 (1970–71).

    Google Scholar 

  • Horman I., Brambilla E.: Are ortho-diphenols antithiamine agents? Ann.N.Y.Acad.Sci.378, 467–468 (1982).

    Article  Google Scholar 

  • Horton G.M.J., Stockdale P.H.G.: Effects of amprolium and monensin on oocyst discharge, feed utilization, and ruminal metabolism of lambs with coccidiosis. Am.J.Vet.Res.40, 966–970 (1979).

    PubMed  CAS  Google Scholar 

  • Jalč D., Kišidayová S., Nerud F.: Effect of plant oils and organic acids on rumen fermentation in vitro. Folia Microbiol.47, 171–177 (2002).

    Article  Google Scholar 

  • Kishi H., Okumoto C., Hiraoka E.: Isolation and properties of mutants of Lactobacillus fermenti resistant to amprolium. J.Vitaminol.17, 59–63 (1971).

    CAS  Google Scholar 

  • Knappe J., Schacht J., Möckel W., Höpner Th., Vetter H. Jr., Edenharder R.: Pyruvate-formate-lyase reaction in Escherichia coli. The enzymatic system converting an inactive form of the lyase into the catalytically active enzyme. Eur.J.Biochem.11, 316–327 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Kubodera T., Yamashita N., Nishimura A.: Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. Biosci.Biotechnol.Biochem.64, 1416–1421 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Liu J.-Y., Timm D.E., Hurley T.D.: Pyrithiamine as a substrate for thiamine pyrophosphokinase. J.Biol.Chem.281, 6601–6607 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Moss A.R.:Methane. Global Warming and Production by Animals, 1st ed. Chalcombie Publications, Warwickshire (UK) 1993.

    Google Scholar 

  • Nagaraja T.G., Newbold C.J., Van Nevel C.J., Demeyer, D.I.: Manipulation of ruminal fermentation, pp. 523–617 in P.N. Hobson, C.S. Stewart (Eds): The Rumen Microbial Ecosystem. Blackie Academic & Professional, London 1997.

    Google Scholar 

  • Olkowski A.A., Laarveld B., Patience J.F., Francis S.I., Christensen D.A.: The effect of sulfate on thiamine-destroying activity in rumen content cultures in-vitro. Internat.J.Vit.Nutr. Res.63, 38–44 (1993).

    CAS  Google Scholar 

  • Pristaš P., Piknová M., Šprinková A., Javorský P.: Genetic variability of rumen selenomonads. Folia Microbiol.53, 165–172 (2008).

    Google Scholar 

  • Russell J.B., Wallace R.J.: Energy-yielding and energy-consuming reactions, pp. 246–282 in P.N. Hobson, C.S. Stewart (Eds): The Rumen Microbial Ecosystem. Blackie Academic & Professional, London 1997.

    Google Scholar 

  • Sinha A.K., Chatterjee G.C.: Metabolism of pyrithiamine by the pyrithiamine-requiring mutant of Staphylococcus aureus. Biochem. J.107, 165–169 (1968).

    PubMed  CAS  Google Scholar 

  • Sudarsan N., Cohen-Chalamish S., Nakamura S., Mitchell Emilsson G., Breaker R.R.: Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem.Biol.12, 1325–1335 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Tafaj M., Schollenberger M., Feofilowa J., Zebeli Q., Steingass H., Drochner W.: Relationship between thiamine concentration and fermentation patterns in the rumen fluid of dairy cows fed with graded concentrate levels. J.Anim.Physiol.Anim. Nutr.90, 335–343 (2006).

    Article  CAS  Google Scholar 

  • Ungerfeld E.M., Rust S.R., Burnett R.: Attempts to inhibit ruminal methanogenesis by blocking pyruvate oxidative decarboxylation. Can.J.Microbiol.49, 650–654 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Vimokesant S., Kunjara S., Rungruangsak K., Nakornchai S., Panijpan B.: Beriberi caused by antithiamine factors in food and its prevention. Ann.N.Y.Acad.Sci.378, 123–136 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Voet D., Voet J.G.: Biochemistry, 2nd ed. John Wiley & Sons, New York 1995.

    Google Scholar 

  • Vogl C., Klein C.M., Batke A.F., Schweingruber M.E., Stolz J.: Characterization of Thi9, a novel thiamine (vitamin B1) transporter from Schizosaccharomyces pombe. J.Biol.Chem.283, 7379–7389 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Wolin M.J., Miller T.L., Stewart C.S.: Microbe-microbe interactions, pp. 467–491 in P.N. Hobson, C.S. Stewart (Eds): The Rumen Microbial Ecosystem. Blackie Academic & Professional, London 1997.

    Google Scholar 

  • Woolley D.W., White A.G.C.: Selective reversible inhibition of microbial growth with pyrithiamine. J.Exp.Med.78, 489–497 (1943).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Ungerfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungerfeld, E.M., Rust, S.R. & Burnett, R. The effects of thiamine inhibition on ruminal fermentation: a preliminary study. Folia Microbiol 54, 521–526 (2009). https://doi.org/10.1007/s12223-009-0075-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-009-0075-9

Keywords

Navigation