Skip to main content
Log in

Physiological and biochemical responses of in vitro Fusarium oxysporum f.sp. niveum to benzoic acid

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The allelopathic potential of an artificially applied allelochemical, benzoic acid, on in vitro Fusarium oxysporum f.sp. niveum (a soil-borne pathogen causing watermelon wilt) was evaluated. Benzoic acid strongly inhibited its growth, sporulation and conidia germination, whereas it stimulated virulence factors of this pathogen. The biomass was reduced by 83–96 % and the conidia germinating rate and conidia production rate were decreased by 100 % at a concentration of >200 mg/L. However, phytopathogenic enzyme activities and mycotoxin production were stimulated with an increase of 10.2–1250 % for enzyme activities and 610–2630 % for mycotoxin yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BoA:

benzoic acid

LB:

Luria-Bertani medium

X-Gal:

5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside

Fon :

Fusarium oxysporum f.sp. niveum

PDA:

potato dextrose agar

PDB:

potato dextrose broth

References

  • Ani V., Varadaraj M., Naidu K.: Antioxidant and antibacterial activities of polyphenolic compounds from bitter cumin (Cuminum nigrum L.). Europ.Food Rev.Tech.224, 109–115 (2006).

    Article  CAS  Google Scholar 

  • Arroyo-Lopez F.N., Bautista-Gallego J., Duran-Quintana M.C., Garrido-Fernandez A.: Modelling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives. Food Microb. doi:10.1016/j.fm.2008.02.007.

  • Asao T., Hasegawa K., Sueda Y., Tomita K., Taniguchi K., Hosoki T., Pramanik M.H.R., Matsui Y.: Autotoxicity of root exudates from taro. Sci.Hortic.97, 389–396 (2003).

    Article  CAS  Google Scholar 

  • Baudoin E., Benizri E., Guckert A.: Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol.Biochem.35, 1183–1192 (2003).

    Article  CAS  Google Scholar 

  • Berlin A., Gilkes N., Kilburn D., Bura R., Markov A., Skomarovsky A.: Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates — evidence for the role of accessory enzymes. Enzyme Microb.Techn.37, 175–184 (2005).

    Article  CAS  Google Scholar 

  • Blackley F., Simpson K.: The microbial metabolism of cinamic acid. Can.J.Microb.10, 175 (1964).

    Article  Google Scholar 

  • Blum U.: Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J.Chem.Ecol.24, 685–708 (1997).

    Article  Google Scholar 

  • Blum U., Shafer R.: Microbial populations and phenolic acids in soil. Soil Biol.Biochem.20, 793–800 (1988).

    Article  CAS  Google Scholar 

  • Bokern L.: Accumulation of phenolic acid conjugates and betacyanins, and changes in the activities of enzymes involved in feruloylglucose metabolism in cell-suspension cultures of Chenopodium rubrum L. Planta184, 261–270 (1991).

    Article  CAS  Google Scholar 

  • Bolwell G.P., Cramer C.L., Lamb C.J., Schuch W., Dixon R.A.: l-Phenylalanine ammonia-lyase from Phaseolus vulgaris: modulation of the levels of active enzyme. Planta169, 97–107 (1986).

    Article  CAS  Google Scholar 

  • Booth C.: The Genus Fusarium, pp. 160–192. Commonwealth Mycological Institute, Reading, London 1971.

    Google Scholar 

  • David D.: Fusaric acid in selective pathogenicity of Fusarium oxysporum. Phytopathology59, 1391–1395 (1969).

    Google Scholar 

  • Elmondafar D., Boustani M.: Cell wall-bound phenolic acid and lignin contents in date palm as related to its resistance to Fusarium oxysporum. Biol.Plant.44, 125–130 (2001).

    Article  Google Scholar 

  • Fuchs A., Jobsen D., Wouts H.: Arabanases in phytopathogenic fungi. Nature206, 714–715 (1965).

    Article  CAS  Google Scholar 

  • Gaumann E.: Fusaric acid as a wilt toxin. Phytopathology47, 342–357 (1957).

    Google Scholar 

  • Hughes K.A., Bridge P., Clark M.S.: Tolerance of Antarctic soil fungi to hydrocarbons. Sci.Total Environ.372, 539–548 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Joffe A.Z.: Fusarium Species: Their Biology and Toxicology. John Wiley & Sons, New York 1986.

    Google Scholar 

  • Komada H.: Biological control of Fusarium wilts in Japan, pp. 65–75 in D. Hornby (Ed.): Biological Control of Soil-Borne Plant Pathogens. CAB International, Wallingford, Redwood Press Ltd., Wiltshire (UK) 1990.

    Google Scholar 

  • Kuwahara H.: Metabolism of lignin-related compounds by bacteria in lignin biodegradation, p. 146 in Microbiology, Chemistry and Potential Applications, Vol. 2. CRC Press, New York 1980.

    Google Scholar 

  • Landi L., Valori F., Ascher J., Renella G., Falchini L., Nannipieri P.: Root exudates effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biol.Biochem.38, 509–516 (2006).

    Article  CAS  Google Scholar 

  • Lee J.G., Lee B.Y., Lee H.J.: Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Sci.Hortic.110, 119–128 (2006).

    Article  CAS  Google Scholar 

  • Leili D., Behboodi S.: Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2. Planta225, 223–234 (2006).

    Article  CAS  Google Scholar 

  • Li S., Hartmann G.L.: Molecular detection of Fusarium solani f.sp. glycines in soybean roots and soil. Plant Pathol.52, 74–83 (2003).

    Article  CAS  Google Scholar 

  • Locher R., Martin H.V., Grison R., Pilet P.E.: Cell wall-bound trans- and cis-ferulic acids in growing maize roots. Physiol.Plant.90, 734–738 (1994).

    Article  CAS  Google Scholar 

  • Lu Y.H., Conrad R.: In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere. Science309, 1088–1090 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Mandeel M.: Microfungal community associated with rhizosphere soil of Zygophyllum qatarense in arid habitats of Bahrain. J.Arid Environ.50, 665–681 (2002).

    Article  Google Scholar 

  • Marasas W.F.O.: Toxigenic Fusarium Species. The Pennsylvania State University Press, University Park (PA) 1984.

    Google Scholar 

  • Martyn R.D.: Fusarium wilt of watermelon, pp. 13–14 in Compendium of Cucurbit Diseases (T.A. Zither, D.L. Hopkins, C.A. Thomas, Eds). The American Phytopathology Society, St. Paul (MN) 1996.

    Google Scholar 

  • Matsui H., Smith W.: Quantitative analysis of fusaric acid in the cultural filtrate and soybean plants inoculated with Fusarium oxysporum var. redolens. J.Rakuno Gakuen Univ.(Natural Sci.)13, 159–167 (1988).

    CAS  Google Scholar 

  • Murado M.A., Gonzalez M.P., Torrado A., Pastrana L.M.: Amylase production by solid-state culture of Aspergillus oryzae on polyurethane foams. Some mechanistic approaches from an empirical model. Proc.Biochem.32, 35–42 (1997).

    Article  CAS  Google Scholar 

  • Nehl D.B., Allen S.J., Brown J.F.: Deleterious rhizosphere bacteria: an integrating perspective. Appl.Soil Ecol.5, 1–20 (1997).

    Article  Google Scholar 

  • Nicol R.W., Yousef L., Traquair J.A., Bernards M.A.: Gingsenosides stimulate the growth of soil-borne pathogens of American gingseng. Phytochemistry64, 257–264 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ohno S., Tomito-Yokotani K., Kosemura S., Node M., Suzuki T., Amano M., Yasui K., Goto T., Yamamura S., Hasegawa K.: A species-selective allelopathic substance from germinating sunflower (Helianthus annuus L.) seeds. Phytochemistry56, 577–581 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Panabieres F., Marais A., Trentin F., Bonnet P., Ricci P.: Repetitive DNA polymorphism analysis as a tool for identifying Phytophthora species. Phytopathology79, 1105–1109 (1979).

    Article  Google Scholar 

  • Pavlovkin J., Mistrik I., Prokop M.: Some aspects of the phytotoxic action of fusaric acid on primary Ricinus roots. Plant Soil Environ.50, 397–401 (2004).

    CAS  Google Scholar 

  • Prosser J.I., Rangel-Castro J.I., Killham K.: Studying plant-microbe interactions using stable isotope technologies. Curr.Opin. Biotech.17, 98–102 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H., Landete J.M., Rivas B.D.L., Munoz R.: Metabolism of food phenolic acids by Lactobacillus plantarum CCECT 748T. Food Chem.107, 1393–1398 (2008).

    Article  CAS  Google Scholar 

  • Sambrook J., David W.R.: Molecular Cloning: a Laboratory Manual, pp. 72–89, 146–216. Cold Spring Harbor Laboratory Press, California 2002.

    Google Scholar 

  • Silva D., Martins E.S., Da Silva R., Gomes E.: Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Proc.Biochem.40, 2885–2889 (2005).

    Article  CAS  Google Scholar 

  • Sturz V.: Bacterial root zone communities, beneficial allelopathies and plant disease control, pp. 123–142 in Inderjit, K.G. Mukerji (Eds): Allelochemicals: Biological Control of Plant Pathogens and Diseases. Springer, The Netherlands 2006.

    Chapter  Google Scholar 

  • Sung K., Kim J., Munster C.L., Corapcioglu M.Y., Park S., Drew M.C., Chang Y.Y.: A simple approach to modeling microbial biomass in the rhizosphere. Ecol.Mod.190, 277–286 (2006).

    Article  CAS  Google Scholar 

  • Tseng T.C., Mount M.S.: Toxicity of endopolygalacturonate, phosphate and protease to potato and cucumber tissue. Phytopathology64, 229 (1974).

    CAS  Google Scholar 

  • Wallace J., Fry S.: Action of diverse peroxidases and lacccases on six cell wall-related phenolic compounds. Phytochemistry52, 769–773 (1999).

    Article  CAS  Google Scholar 

  • Wu H., Haig T., Pratley J., Lemerle D., An M.: Allelochemicals in wheat (Triticum aestivum L.): variations of phenolic acids in shoot tissues. J.Chem.Ecol.27, 125–135 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Wu H.S., Waseem R., Liu D., Wu C.L., Mao Z., Shen Q.R.: Allelopathic impact of artificially applied coumarin on Fusarium oxysporum f.sp. niveum. World J.Microbiol.Biotechn.24, 1297–1304 (2008a).

    Article  CAS  Google Scholar 

  • Wu H.S., Waseem R., Fan J.Q., Sun Y.G., Bao W., Shen Q.R.: Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f.sp. niveum. J.Agric.Food Chem.56, 1316–1321 (2008b).

    Article  PubMed  CAS  Google Scholar 

  • Wu H.S., Liu D.Y., Ling N., Bao W., Ying R.R., Ou Y.H., Huo Z.H., Li Y.F., Shen Q.R.: Allelopathic role of artificially applied vanillic acid on in vitro Fusarium oxysporum f.sp. niveum. Allel.J.22, 111–122 (2008c).

    Google Scholar 

  • Zhang Z.H., Zhang J.Y., Wang Y.C., Zheng X.B.: Molecular detection of Fusarium oxysporum f.sp. niveum and Mycosphaerilla melonis in infected plant tissues and soil. FEMS Microbiol.Lett.249, 39–47 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. -R. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H.S., Wang, Y., Zhang, C.Y. et al. Physiological and biochemical responses of in vitro Fusarium oxysporum f.sp. niveum to benzoic acid. Folia Microbiol 54, 115–122 (2009). https://doi.org/10.1007/s12223-009-0017-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-009-0017-6

Keywords

Navigation