Skip to main content
Log in

Influence of Hybrid Ratios on Shape Memory Properties of Basalt/Carbon Fiber Hybrid Composites with Graphene Oxide Prepared by VIHPS

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A study on the shape memory properties of 6 layers bi-directional basalt fiber/carbon fiber hybrid composites with graphene oxide (GO) was presented in this paper. The hybrid composites were prepared by the vacuum infiltration hot pressing system (VIHPS). The macroscopic appearance of these composites was desirable, and their microstructure was satisfactory. According to the test results, with the content of basalt fiber decreased, the shape fixation ratio decreased, while the shape recovery ratio and shape recovery force all increased. The basalt fiber composite with 6 layers basalt fiber (B6) had a maximum shape fixation ratio of 94.94%, a minimum shape recovery ratio of 85.52%, and a minimum recovery force of 1.36 N. Compared with B6, the shape fixation ratio of the carbon fiber composite with 6 layers carbon fiber (C6) decreased by 10.43%, which was 84.51%. The shape recovery ratio and shape recovery force were increased by 9.60% and 3.31 times, and their values were 95.12% and 5.86 N, respectively. In addition, according to the temperature-recovery force curves, it was found that the seven groups of composites all reached their maximum shape recovery force when the temperature was about 110 °C. When the temperature was between 50 °C and 80 °C, the recovery force of the composite increased greatly, and then, the recovery force increased slightly. However, when the temperature was above the glass transition temperature (\({\mathrm{T}}_{\mathrm{g}}\)), the recovery force gradually decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z.Q. Wang, J.B. Liu, J.M. Guo, X.Y. Sun, L.D. Xu, Polymers-Basel 9, 594 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  2. L.M. Yu, T.Q. Zhang, W.J. Wang, Y.B. Dong, Y.Q. Fu, Pigm. Resin. Technol. 50, 377 (2020)

    Article  Google Scholar 

  3. J.P. Gu, H.Y. Sun, H. Zeng, Z.B. Cai, J. Intel. Mat. Syst. Str. 31, 503 (2019)

    Article  Google Scholar 

  4. O.Y. Bozkurt, M.E. Gokdemir, Polym. Compos. 39, E2274 (2019)

    Article  Google Scholar 

  5. A.S. Patil, E.J. Arnold, IEEE Trans. Antenn. Propag. 70, 451 (2022)

    Article  Google Scholar 

  6. A. Valenza, V. Fiore, G. Di Bella, J. Compos. Mater. 44, 1351 (2010)

    Article  CAS  Google Scholar 

  7. M.T. Dehkordi, H. Nosraty, M.M. Shokrieh, G. Minak, D. Ghelli, Mater. Design 43, 283 (2013)

    Article  Google Scholar 

  8. G.H. Zhu, G.Y. Sun, H. Yu, S.F. Li, Q. Li, Int. J. Mech. Sci. 135, 458 (2018)

    Article  Google Scholar 

  9. A. Adesina, Constr. Build. Mater. 266, 1 (2021)

    Article  Google Scholar 

  10. V. Fiore, T. Scalici, G. Di Bella, A. Valenza, Compos. Part B Eng. 74, 74 (2015)

    Article  CAS  Google Scholar 

  11. I.D.G.A. Subagia, Y. Kim, L.D. Tijing, C.S. Kim, H.K. Shon, Compos. Part B Eng. 58, 251 (2014)

    Article  Google Scholar 

  12. S.H. Han, H.J. Oh, H.C. Lee, S.S. Kim, Compos. Part B Eng. 45, 172 (2013)

    Article  CAS  Google Scholar 

  13. V. Dhand, G. Mittal, K.Y. Rhee, S.J. Park, D. Hui, Compos. Part B Eng. 73, 166 (2015)

    Article  CAS  Google Scholar 

  14. B. Zuccarello, F. Bongiorno, M.C. Militello, Polymers-Basel 14, 1457 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. G.Y. Sun, S.W. Tong, D.D. Chen, Z.H. Gong, Q. Li, Int. J. Mech. Sci. 148, 636 (2018)

    Article  Google Scholar 

  16. F.W. Ma, M. Yang, Y.F. Pu, Y.S. Zhi, Mater. Res. Express 5, 1 (2018)

    Google Scholar 

  17. K.D.C. Emmanuel, H.M.C.M. Herath, L.H.J. Jeewantha, J.A. Epaarachchi, T. Aravinthan, Constr. Build. Mater. 303, 1 (2021)

    Article  Google Scholar 

  18. Z.K. Ren, L.W. Liu, Y.J. Liu, J.S. Leng, Compos. Struct. 252, 1 (2020)

    Google Scholar 

  19. R.A. Alshgari, M.S.C. Prasad, B.K. Srivastava, M.S. Al Ansari, P. Gupta, A. Sivakumar, S.M. Wabaidur, M.A. Islam, A. Diriba, Adv. Polym. Tech. 202, 1 (2022)

    Google Scholar 

  20. Y.Q. Ma, Y. Chen, W. Xu, Y.Y. Zhang, X.Y. Ren, J. Wang, Y.T. Zhao, Integr. Ferroelectr. 217, 176 (2021)

    Article  CAS  Google Scholar 

  21. L. Yan, F.L. Chu, W.Y. Tuo, X.B. Zhao, Y. Wang, P.Q. Zhang, Y.B. Gao, Polym. Polym. Compos. 29, 1612 (2021)

    CAS  Google Scholar 

  22. E. Monaldo, F. Nerilli, G. Vairo, Compos. Struct. 214, 246 (2019)

    Article  Google Scholar 

  23. H. Sharma, A. Kumar, S. Rana, L. Guadagno, Polymers-Basel 14, 1548 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. N. Jamali, H. Khosravi, A. Rezvani, E. Tohidlou, Fiber Poly. 20, 138 (2019)

    Article  CAS  Google Scholar 

  25. A. Saleem, L. Medina, M. Skrifvars, L. Berglin, Molecules 25, 4933 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Lim, K.Y. Rhee, H.J. Kim, D.H. Jung, Carbon Lett. 15, 125 (2014)

    Article  Google Scholar 

  27. H. Zeng, J.S. Leng, J.P. Gu, H.Y. Sun, Int. J. Mech. Sci. 166, 105212 (2020)

    Article  Google Scholar 

  28. J.M. Guo, Z.Q. Wang, L.Y. Tong, H.Q. Lv, W.Y. Liang, Compos. Part A Appl. S. 76, 162 (2015)

    Article  CAS  Google Scholar 

  29. K.S.S. Kumar, R. Biju, C.P.R. Nair, React. Funct. Polym. 73, 421 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51705389), The Natural Science Basic Research Program of Shaanxi (No. 2022JM-265), The Foundation of State Key Laboratory of Public Big Data (No. PBD2021-08), the Key Research and Development and Science and Technology Support Program in Henan Province (Program No.222102230099), the Fundamental Research Funds for the Central Universities and Innovation Fund of Xidian University (No. 5004-20109195867 and 5004-20109205867), Key Research and Development and Science and Technology Support Program in Henan Province (No. 222102230099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqin Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ma, Y., Yang, Y. et al. Influence of Hybrid Ratios on Shape Memory Properties of Basalt/Carbon Fiber Hybrid Composites with Graphene Oxide Prepared by VIHPS. Fibers Polym 24, 2807–2818 (2023). https://doi.org/10.1007/s12221-023-00282-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00282-w

Keywords

Navigation