Skip to main content
Log in

Effects of Added Water on the Resinification Conditions, Bending Strength, Optical Performance, and Structural Properties of Artificial Spider Protein Resin Prepared by Hot-Pressing the Powder

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Resins were produced from artificial spider protein powder (53-100 μm particles) by hot-pressing at 100–180 °C and 30 MPa with 0–30 wt% added water. These were subjected to three-point bending, optical performance analysis, Fourier-transform infrared (FTIR)-attenuated total reflectance (ATR) spectroscopy, and crystallinity analysis by wide-angle X-ray scattering (WAXS). The resin produced with 30 wt% water and at lower temperature (120 °C) achieved the highest optical translucency, and its bending strength (∼144.6 MPa) and bending modulus (∼8.3 GPa) were comparable to those of high-performance plastics such as polyphenylene sulfide. Compared to silk from domestic silkworms, the high water uptake of this spider protein is attributed to its larger amount of hydrophilic amino acids. Spider protein resin showed slightly higher crystallinity after adding 30 wt% water during hot-pressing (∼39 % vs. ∼37 % without added water). Spectroscopic analyses also suggested that the addition of water promoted the formation of β-sheet (crystal region), supporting the crystallinity results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rising, M. Widhe, J. Johansson, and M. Hedhammar, Cell. Mol. Life Sci., 68, 169 (2011).

    Article  CAS  Google Scholar 

  2. B. Madsen, Z. Z. Shao, and F. Vollrath, Macromolecules, 24, 301 (1999).

    Article  CAS  Google Scholar 

  3. H. Chung, T. Y. Kim, and S. Y. Lee, Cur. Opin. Biotechnol., 23, 957 (2012).

    Article  CAS  Google Scholar 

  4. W. Yu, T. Kuzuya, S. Hirai, and Y. Tamada, Sen’i Gakkaishi, 68, 259 (2012).

    Article  CAS  Google Scholar 

  5. A. Kaneko, Y. Tamada, S. Hirai, T. Kuzuya, and T. Hashimoto, Macromol. Mater. Eng., 297, 272 (2012).

    Article  CAS  Google Scholar 

  6. H. A. Tuan, S. Hirai, T. Tamada, and S. Akioka, Mater. Sci. Eng. C, 97, 431 (2019).

    Article  CAS  Google Scholar 

  7. Y. Cao and B. Wang, Int. J. Mol. Sci., 10, 1514 (2009).

    Article  CAS  Google Scholar 

  8. J. Magoshi and S. Nakamura, J. Polym. Sci., Part B: Polym. Phys., 23, 227 (1985).

    CAS  Google Scholar 

  9. M. Tsukada, J. Polym. Sci.: Polym. Lett. Ed., 18, 501 (1980).

    CAS  Google Scholar 

  10. M. Tsukada, J. Polym. Sci., Part B: Polym. Phys., 24, 457 (1986).

    Article  CAS  Google Scholar 

  11. X. Hu, D. Kaplan, and P. Cebe, Macromolecules, 39, 6161 (2006).

    Article  CAS  Google Scholar 

  12. C. Xing, T. Munro, B. White, H. Ban, C. G. Copeland, and R. V. Lewis, Polymer (Guildf), 55, 4226 (2014).

    Article  CAS  Google Scholar 

  13. N. Jaramillo-Quiceno, C. Álvarez-López, and A. Restrepo-Osorio, Procedia Eng., 200, 384 (2017).

    Article  CAS  Google Scholar 

  14. X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, Biomacromolecules, 12, 1686 (2011).

    Article  CAS  Google Scholar 

  15. K. Kotaka, T. Ishii, J. Ebara, R. Sato, and J. Noba, Patent, WO2017094722A1 (2017).

  16. L. W. Jelinski, A. Blye, O. Liivak, C. Michal, G. Laverde, A. Seidel, N. Shah, and Z. Yang, Macromolecules, 24, 197 (1999).

    Article  CAS  Google Scholar 

  17. N. A. Oktaviani, A. Matsugami, D. Malay, F. Hayashi, D. L. Kaplan, and K. Numata, Nat. Commun., 9, 2121 (2018).

    Article  Google Scholar 

  18. J. Hosokawa, T. Endo, R. Kitagawa, and M. Nishiyama, Rep. Shikoku Nat. Ind. Res. Inst., 29, 79 (1998).

    Google Scholar 

  19. R. E. Marsh, R. B. Corey, and L. Pauling, Biochim. Biophys. Acta, 16, 1 (1955).

    Article  CAS  Google Scholar 

  20. K. Yazawa, A. D. Malay, H. Masunaga, Y. Norma-Rashid, and K. Numata, Commun Mater, 1, 10 (2020).

    Article  Google Scholar 

  21. Y. K. Lee and J. M. Powers, Dent. Mater., 23, 259 (2007).

    Article  CAS  Google Scholar 

  22. J. Lee, H. Jung, J. Lee, D. Lim, K. Yang, J. Yi, and W. C. Song, Thin Solid Films, 516, 1634 (2008).

    Article  CAS  Google Scholar 

  23. I. Saarikoski, M. Suvanto, and T. A. Pakkanen, Thin Solid Films, 516, 8278 (2008).

    Article  CAS  Google Scholar 

  24. S. Meng, N. Sun, K. Su, F. Feng, S. Wang, D. Wang, X. Zhao, H. Zhou, and C. Chen, Polymer, 116, 89 (2017).

    Article  CAS  Google Scholar 

  25. N. Hong, J. Zhan, X. Wang, A. A. Stec, T. R. Hull, H. Ge, W. Xing, L. Song, and Y. Hu, Compos. Part A, 64, 203 (2014).

    Article  CAS  Google Scholar 

  26. O. M. Doğan, G. Bolayir, S. Keskin, A. Doğan, and B. Bek, J. Mater. Sci. — Mater. Med., 19, 2343 (2008).

    Article  Google Scholar 

  27. H. A. Derazkola and M. Elyasi, J. Manuf. Processes, 35, 88 (2018).

    Article  Google Scholar 

  28. X. Hao, G. Gai, F. Lu, X. Zhao, Y. Zhang, J. Liu, Y. Yang, D. Gui, and C. Nan, Polymer, 46, 3528 (2005).

    Article  CAS  Google Scholar 

  29. Y. Yamamoto and M. Hashimoto, Wear, 257, 181 (2004).

    Article  CAS  Google Scholar 

  30. Spiber Inc. and Technohama Co., Ltd., Japan Patent, WO2018043698 (2018).

  31. X. Hu, X. Wang, J. Rnjak, A. S. Weiss, and D. L. Kaplan, Biomaterials, 31, 8121 (2010).

    Article  CAS  Google Scholar 

  32. D. Xu, X. Shi, F. Thompson, W. S. Weber, Q. Mou, and J. L. Yarger, Int. J. Biol. Macromol., 81, 171 (2015).

    Article  CAS  Google Scholar 

  33. T. Asakura, M. Okonogi, Y. Nakazawa, and K. Yamauchi, J. Am. Chem. Soc., 128, 6231 (2006).

    Article  CAS  Google Scholar 

  34. E. S. Sashina, A. M. Bochek, N. P. Novoselov, and D. A. Kirichenko, Russ. Appl. Chem., 79, 869 (2006).

    Article  CAS  Google Scholar 

  35. S. Miyata and N. Okui, Soc. Polym. Sci. Jpn., 30, 365 (1981).

    CAS  Google Scholar 

  36. D. J. Little and D. M. Kane, Opt. Soc., 19, 19182 (2011).

    CAS  Google Scholar 

  37. Y. Ohstuka, Soc. Rubber Sci. Technol. Jpn., 61, 805 (1988).

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the ImPACT (Impulsing Paradigm Change through Disrupt Technologies) Program (2015-PM06-04-01). The authors would like to thank companies and research institutes that participated in the ImPACT Program. They also sincerely thank Spiber Inc. for providing the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Akioka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akioka, S., Hirai, S., Nakayama, Y. et al. Effects of Added Water on the Resinification Conditions, Bending Strength, Optical Performance, and Structural Properties of Artificial Spider Protein Resin Prepared by Hot-Pressing the Powder. Fibers Polym 23, 263–272 (2022). https://doi.org/10.1007/s12221-021-3038-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-3038-7

Keywords

Navigation