Skip to main content
Log in

Influence of Gamma Radiation Treatment on the Mechanical Properties of Sisal Fibers to Use into Composite Materials

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The use of treatments in natural fibers is largely used, because it can improve the interfacial adhesion of polymer composites. However, the choice of the most appropriate treatment should take into account environmental factors, due to the need of new materials to meet requirements related to the concept of sustainability. This article investigated the influence of the mercerization, acetylation and gamma radiation treatments on the mechanical properties of sisal fibers, to use in composite materials. Experimental conditions were defined with different concentrations of reagents and radiation doses in order to understand the impact of these reactions on the tensile properties of sisal fibers. Thermal gravimetric analysis (TGA) and Fourier Transform Infrared (FTIR) spectroscopy were used to investigate the fiber degradation process and the chemical modifications after the treatments. The use of mercerization (0.1 M and 1.0 M NaOH concentrations) combined with acetylation increased the hydrophobic character of the sisal fiber, which may improve its interaction with polymeric matrices. In addition, mercerized sisal fiber at 0.5 M NaOH concentration, exposed to 25 kGy gamma radiation dose, showed physical and chemical structural changes that positively influence the fiber-matrix adhesion in polymer composite materials. All treatments made can reduce the natural tensile properties of the sisal fibers, because they can remove fundamental components to the structure and the stiffening of these fibers. Considering changes in the mechanical behavior, the use of gamma radiation presented similar results of the traditional chemical treatments, being less aggressive to the fibers and not causing the same negative impact on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Otto, M. P. Moisés, G. Carvalho, A. W. Rinaldi, J. C. Garcia, E. Radovanovic, and S. L. Fávaro, Compos. Part B-Eng., 110, 459 (2017).

    Article  CAS  Google Scholar 

  2. F. M. Al-Oqla, S. M. Sapuan, M. R. Ishak, and A. A. Nuraini, Fiber. Polym., 16, 153 (2015).

    Article  CAS  Google Scholar 

  3. L. M. G. Vieira, J. C. Santos, T. H. Panzera, J. C. C. Rubio, and F. Scarpa, Ind. Crop. Prod., 99, 189 (2017).

    Article  CAS  Google Scholar 

  4. L. Á. Oliveira, J. C. Santos, T. H. Panzera, R. T. S. Freire, L. M. G. Vieira, and J. C. C. Rubio, Polym. Polym. Compos., 26, 391 (2018).

    Google Scholar 

  5. X. Zhao, R. K. Li, and S. Bai, Compos. Part A-Appl. Sci. Manuf., 65, 169 (2014).

    Article  CAS  Google Scholar 

  6. A. F. Santos, C. Y. Martins, P. O. Santos, E. B. Corrêa, H. R. Barbosa, A. P. Sandoval, L. M. Oliveira, J. T. Souza, and A. C. Soares, Plant Soil, 385, 37 (2014).

    Article  Google Scholar 

  7. J. T. C. González, A. J. P. Dillon, A. R. Pérez-Pérez, R. Fontana, and C. P. Bergman, Fiber. Polym., 16, 2112 (2015).

    Article  Google Scholar 

  8. Y. Li, Y.-W. Mai, and L. Ye, Compos. Sci. Technol., 60, 2037 (2000).

    Article  CAS  Google Scholar 

  9. A. K. Mohanty, M. Misra, and L. T. Drzal, Compos. Interface, 8, 313 (2001).

    Article  CAS  Google Scholar 

  10. T. P. Mohan and K. Kanny, Compos. Part A-Appl. Sci. Manuf., 43, 1989 (2012).

    Article  CAS  Google Scholar 

  11. L. J. Silva, J. C. C. Rubio, T. H. Panzera, and P. H. R. Borges, Sci. Eng. Compos. Mater., 20, 203 (2013).

    Article  CAS  Google Scholar 

  12. F. M. Santos, F. B. Batista, T. H. Panzera, A. L. Christoforo, and J. C. C. Rubio, Matéria (Rio J.), 22, 1207 (2017).

    Google Scholar 

  13. O. Fadele, I. N. A. Oguocha, A. G. Odeshi, M. Soleimani, and L. G. Tabil, Cellulose, 26, 9463 (2019).

    Article  CAS  Google Scholar 

  14. P. R. Fitch-Vargas, I. L. Camacho-Hernández, F. Martínez-Bustos, A. R. Islas-Rubio, K. I. Carrillo-Cañedo, A. Calderón-Castro, N. Jacobo-Valenzuela, A. Carrillo-López, C. I. Delgado-Nieblas, and E. Aguilar-Palazuelos, Carbohyd. Polym., 219, 378 (2019).

    Article  CAS  Google Scholar 

  15. V. Fiore, T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino, and A. Valenza, Compos. Part B Eng., 85, 150 (2016).

    Article  CAS  Google Scholar 

  16. C. Albano, J. Reyes, M. Ichazo, J. González, and M. Brito, Polym. Degrad. Stabil., 76, 191 (2002).

    Article  CAS  Google Scholar 

  17. J. M. M. Islam, M. A. Hossan, F. R. Alom, M. I. H. Khan, and M. A. Khan, J. Compos. Mater., 51, 31 (2016).

    Article  Google Scholar 

  18. R. A. Khan, S. Beck, D. Dussault, S. Salmieri, J. Bouchard, and M. Lacroix, J. Appl. Polym. Sci., 129, 3038 (2013).

    Article  CAS  Google Scholar 

  19. Taimur-Al-Mobarak, M. F. Mina, M. A. Gafur, A. N. Ahmed, and S. A. Dhar, Fiber. Polym., 19, 31 (2018).

    Article  CAS  Google Scholar 

  20. ASTM D3822, “ASTM International”, West Conshohocken, 2014.

  21. H. Zou, L. Wang, H. Gan, and C. Yi, Polym. Compos., 33, 1659 (2012).

    Article  CAS  Google Scholar 

  22. A. C. Milanese, M. O. H. Cioffi, and J. C. Voorwald, Compos. Part B-Eng., 43, 2843 (2012).

    Article  CAS  Google Scholar 

  23. S. Borysiak, J. Therm. Anal. Calorim., 101, 439 (2010).

    Article  CAS  Google Scholar 

  24. S. R. Ferreira, F. A. Silva, P. R. L. Lima, and R. D. Toledo Filho, Constr. Build. Mater., 139, 551 (2017).

    Article  CAS  Google Scholar 

  25. A. Belaadi, A. Bezazi, M. Bourchak, F. Scarpa, and C. Zhu, Compos. Part B-Eng., 67, 481 (2014).

    Article  CAS  Google Scholar 

  26. X. Huang, D. Kocaefe, Y. Kocaefe, and A. Pichette, Eur. J. Wood Prod., 76, 525 (2018).

    Article  CAS  Google Scholar 

  27. A. K. Gupta, M. Biswal, S. Mohanty, and S. K. Nayak, Fiber. Polym., 15, 994 (2014).

    Article  CAS  Google Scholar 

  28. K. Mahato, S. Goswami, and A. Ambarkar, Fiber. Polym., 15, 1310 (2014).

    Article  CAS  Google Scholar 

  29. F. D. Rzatki and G. M. O. Barra, Polym. Sci. Technol., 24, 344 (2014).

    CAS  Google Scholar 

  30. K. Senthilkumar, N. Saba, N. Rajini, M. Chandrasekar, M. Jawaid, S. Siengchin, and O. Y. Alotman, Constr. Build. Mater., 174, 713 (2018).

    Article  CAS  Google Scholar 

  31. J. F. Pereira, D. P. Ferreira, J. Bessa, J. Matos, F. Cunha, I. Araújo, L. F. Silva, E. Pinho, and R. Fangueiro, Polym. Compos., 40, 3472 (2019).

    Article  CAS  Google Scholar 

  32. W. Machnowski, B. Gutarowska, J. Perkowski, and H. Wrzosek, Text. Res. J., 1, 44 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would thank to the Nuclear Technology Developing Center — CDTN, the Federal Center for Technological Education of Minas Gerais — CEFET-MG, the Post-Graduate Program in Mechanical Engineering (PPGMEC) and the Post-Graduate Program in Production Engineering (PPGEP) of the Federal University of Minas Gerais — UFMG, by the physical structure and support. This study was financed in part by CNPq, Fapemig and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — CAPES — Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Dorneles de Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorneles de Castro, B., Machado Neves Silva, K.M., Maziero, R. et al. Influence of Gamma Radiation Treatment on the Mechanical Properties of Sisal Fibers to Use into Composite Materials. Fibers Polym 21, 1816–1823 (2020). https://doi.org/10.1007/s12221-020-1106-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1106-z

Keywords

Navigation