Skip to main content
Log in

The Longitudinal and Transverse Tensile Properties of Unidirectional and Bidirectional Bamboo Fiber Reinforced Composites

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Alkali treatment on bamboo fibers were reported to improve the interface strength with epoxy resin as formed to a composite. In order to reduce the process time of alkali treatment, bamboo fibers were treated in alkali with different concentrations under the room temperature. The alkali treatment process for the bamboo fibers, which results in a higher tensile strength, was used for the subsequent studies. Unidirectional and bidirectional BF preforms were constructed in our laboratory. The unidirectional (UD) and bidirectional (BD) BF/EP composites were fabricated using the bamboo fibers treated with the selected BF alkali treatment process. Tensile properties were measured in both the longitudinal and transverse directions for the UD and BD BF/EP composites with different fiber volume fractions. The UD BF/EP composite has good reinforcement effect in the fiber direction and the tensile strength is compatible to the reported results. However, the transverse strength of UD composites is weaker than the pure epoxy. For BD BF/EP composites, tensile strengths in both the longitudinal and transverse directions all show some improvement as compared to the pure epoxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hazell (Ed.), “Getting it Right from the Start: Developing a Circular Economy for Novel Materials”, Green Alliance: London, UK, 2017.

    Google Scholar 

  2. S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, Compos. Part A-Appl. Sci. Manuf., 35, 371 (2004).

    Article  Google Scholar 

  3. L. Yan, N. Chouw, and X. Yuan, J. Reinf. Plast. Compos., 31, 425 (2012).

    Article  CAS  Google Scholar 

  4. D. Liu, J. Song, D. P. Anderson, P. R. Chang, and Y. Hua, Cellulose, 19, 1449 (2012).

    Article  CAS  Google Scholar 

  5. N. T. Phong, T. Fujii, B. Chuong, and K. Okubo, J. Mater. Sci. Res., 1, 144 (2012).

    CAS  Google Scholar 

  6. P. Zakikhani, R. Zahari, M. T. H. Sultan, and D. L. Majid, Mater. Des., 63, 820 (2014).

    Article  CAS  Google Scholar 

  7. Q. Liu, T. Stuart, M. Hughes, H. S. S. Sharma, and G. Lyons, Compos. Part A-Appl. Sci. Manuf., 38, 1403 (2007).

    Article  Google Scholar 

  8. L. Yan, N. Chouw, and K. Jayaraman, Compos. Part B-Eng., 56, 296 (2014).

    Article  CAS  Google Scholar 

  9. J. Hobson and M. Carus, “Targets for Bio-based Composites and Natural Fibres”, JEC Composites, No. 63, 31–32, 2011.

  10. S. Rwawiire, J. Okello, and G. Habbi, Tekstilec, 57, 315 (2014).

    Article  Google Scholar 

  11. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).

    Article  CAS  Google Scholar 

  12. K. J. Wong, B. F. Yousif, and K. O. Low, Proc. Inst. Mech. Eng., Part L: J. Mater. Des. Appl., 224, 139 (2010).

    Google Scholar 

  13. S. Kalia, B. S. Kaith, and I. Kaur, Polym. Eng. Sci., 49, 1253 (2009).

    Article  CAS  Google Scholar 

  14. K. Okubo, T. Fujii, and Y. Yamamoto, Compos. Part A-Appl. Sci. Manuf., 35, 377 (2004).

    Article  Google Scholar 

  15. E. Trujillo, M. Moesen, L. Osorio, A. W. Van Vuure, J. Ivens, and I. Verpoest, Compos. Part A-Appl. Sci. Manuf., 61, 115 (2014).

    Article  CAS  Google Scholar 

  16. A. Van Vuure, L. Osorio, E. Trujillo, C. Fuentes, and I. Verpoest, “Long Bamboo Fibre Composites”, in Proc. 18th International Conference on Composite Materials, 27–31, 2009.

  17. T.-N. Chou and W.-B. Young, J. Aeronaut. Astronaut. Aviat., 50, 237 (2018).

    Google Scholar 

  18. C. S. Verma and V. M. Chariar, Compos. Part B-Eng., 45, 369 (2013).

    Article  CAS  Google Scholar 

  19. R. Sukmawan, H. Takagi, and A. N. Nakagaito, Compos. Part B-Eng., 84, 9 (2016).

    Article  CAS  Google Scholar 

  20. H. Chen, Y. Yu, T. Zhong, Y. Wu, Y. Li, Z. Wu, and B. Fei, Cellulose, 24, 333 (2017).

    Article  CAS  Google Scholar 

  21. J.-K. Huang and W.-B. Young, Compos. Part B-Eng., 166, 272 (2019).

    Article  CAS  Google Scholar 

  22. H. Kim, K. Okubo, T. Fujii, and K. Takemura, J. Adhes. Sci. Technol., 27, 1348 (2013).

    Article  CAS  Google Scholar 

  23. K. Zhang, F. Wang, W. Liang, Z. Wang, Z. Duan, and B. Yang, Polymers, 10, 608 (2018).

    Article  Google Scholar 

  24. S. Ochi, Int. J. Compos. Mater., 2, 1 (2012).

    Google Scholar 

  25. A. C. Manalo, E. Wani, N. A. Zukarnain, W. Karunasena, and K.-T. Lau, Compos. Part B-Eng., 80, 73 (2015).

    Article  CAS  Google Scholar 

  26. W.-B. Young and Y.-C. Tsao, J. Compos. Mater., 49, 2803 (2014).

    Article  Google Scholar 

  27. L. Osorio, E. Trujillo, A. W. Van Vuure, and I. Verpoest, J. Reinf. Plast. Compos., 30, 396 (2011).

    Article  CAS  Google Scholar 

  28. C. S. Verma and V. M. Chariar, Compos. Part B-Eng., 43, 1063 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank for the financial support from Ministry of Science and Technology in Taiwan under the contract number of MOST 107-2221-E-006-120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, HH., Young, WB. The Longitudinal and Transverse Tensile Properties of Unidirectional and Bidirectional Bamboo Fiber Reinforced Composites. Fibers Polym 21, 2938–2948 (2020). https://doi.org/10.1007/s12221-020-0109-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-0109-0

Keywords

Navigation