Skip to main content
Log in

Facile Preparation of Mechanical Reinforced and Biocompatible Silk Gels

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nontoxic and controllable way to fabricate silk fibroin (SF) gel with high mechanical properties is of critical important to biomaterial in tissue engineering. Electrochemically triggered electrophoretic migration and electric charge of the silk molecules both contributed to SF microspheres and electronic gel (e-gel) formation by sol-gel transition. In this study, a novel silk pH e-gel with higher mechanical property was prepared by combining low-voltage electric fields with isoelectric point (pI) adjustment. This green process was mild and friendly without chemical crosslinker. Compressive modulus of the silk pH e-gel was up to 70 MPa that was significantly higher than that of SF gelation spontaneously. Furthermore, analysis of molecule conformation of the silk pH-e-gel demonstrated that most of random coil structures transformed into α-helix and a little β-sheet structures during this process. The silk pH e-gel was loaded with rhodamine B and showed an obvious sustainable release profile. Accumulation releasing amounts was approximately 60% at day 9. Cytocompatibility of the silk pH-e-gel was evaluated by epithelial cell. The results showed that the gels could support the cell growth and proliferation in vitro. Finally, gel biodegradation was assessed by protease XIV. After biodegradation for 28 days, remaining weight of the gel was about 20.23±2.59 wt%, indicating its good biodegradability. This novel process was established successfully by combining low voltage field with pH-control, which provided an alternative material for regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, M. Buehler, and D. Kaplan, Prog. Polym. Sci., 85, 1 (2018).

    Article  CAS  Google Scholar 

  2. H. Jin, J. Park, V. Karageorgiou, U. Kim, R. Valluzzi, P. Cebe, and D. Kaplan, Adv. Funct. Mater., 15, 1241 (2005).

    Article  CAS  Google Scholar 

  3. X. Li, S. Yan, J. Qu, M. Li, D. Ye, R. You, Q. Zhang, and D. Wang, Int. J. Biol. Macromol., 117, 691 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Q. Zhang, Y. Zhao, S. Yan, Y. Yang, H. Zhao, M. Li, S. Lu, and D. Kaplan, Acta Biomater., 7, 2628 (2012).

    Article  CAS  Google Scholar 

  5. D. Kaplan and X. Wang, J. Control. Release, 117, 360 (2010).

    Google Scholar 

  6. B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, Adv. Funct. Mater., 24, 4615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Z. Zheng, J. Wu, M. Liu, H. Wang, C. Li, M. J. Rodriguez, G. Li, X. Wang, and D. L. Kaplan, Adv. Healthc. Mater., 7, e1701026 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. S. Yan, Q. Wang, Z. Tariq, R. You, X. Li, M. Li, and Q. Zhang, Int. J. Biol. Macromol., 118, 775 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. T. Yucel, P. Cebe, and D. Kaplan, Biophys. J., 97, 2044 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. I. Greving, M. Cai, F. Vollrath, and H. Schniepp, Biomacromolecules, 13, 676 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. X. Wang, J. Kluge, G. Leisk, and D. Kaplan, Biomaterials, 29, 1054 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Z. Zhu, S. Ling, J. Yeo, S. Zhao, L. Tozzi, M. Buehler, F. Omenetto, C. Li, and D. Kaplan, Adv. Funct. Mater., 28, 1704757 (2018).

    Article  CAS  Google Scholar 

  13. S. Yan, C. Zhao, X. Wu, Q. Zhang, and M. Li, Sci. China Chem., 53, 535 (2010).

    Article  CAS  Google Scholar 

  14. G. Leisk, T. Lo, Y. Tuna, Q. Lu, and D. Kaplan, Adv. Mater., 22, 711 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. T. Yucel, N. Kojic, G. Leisk, T. Lo, and D. Kaplan, J. Struct. Biol., 170, 406 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Lin, X. Xia, K. Shang, R. Elia, W. Huang, P. Cebe, G. Leisk, F. Omenetto, and D. Kaplan, Biomacromolecules, 14, 2629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Q. Lu, Y. Huang, M. Li, B. Zuo, S. Lu, J. Wang, H. Zhu, and D. Kaplan, Acta Biomater., 7, 2394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Ling, D. Kaplan, and M. Buehler, Nat. Rev. Mater., 3, 18016/1–15 (2018).

    Article  CAS  Google Scholar 

  19. Y. Lin, S. Wang, Y. Chen, Q. Wang, K. Burke, E. Spedden, C. Staii, A. Weiss, and D. Kaplan, Nanomedicine, 5, 803 (2015).

    Article  CAS  Google Scholar 

  20. M. Fini, A. Motta, P. Torricelli, G. Glavaresi, N. Aldini, M. Tschon, R. Giardino, and C. Migliaresi, Biomaterials, 26, 3527 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. C. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, and Z. Li, Nucleic Acids Res., 28, 2413 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Kojic, M. Panzer, G. Leisk, W. Raja, M. Kojic, and D. Kaplan, Soft Matter., 8, 2897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Yan, Q. Zhang, J. Wang, Y. Liu, S. Lu, M. Li, and D. Kaplan, Acta Biomater., 6, 6771 (2013).

    Article  CAS  Google Scholar 

  24. L. Moroni, J. Burdick, C. Highley, S. Lee, Y. Morimoto, S. Takeuchi, and J. Yoo, Nature Rev. Mater., 3, 21 (2018).

    Article  CAS  Google Scholar 

  25. S. Ling, Z. Qin, C. Li, W. Huang, D. L. Kaplan, and M. J. Buehler, Nat. Commun., 8, 1387 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Nova, S. Keten, N. Pugno, A. Redaelli, and M. Buehler, Nano Lett., 10, 2626 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. S. Nagarkar, T. Nicolai, C. Chassenieux, and A. Lele, Phys. Chem. Chem. Phys., 15, 3834 (2010).

    Article  CAS  Google Scholar 

  28. M. Li, M. Ogiso, and N. Minoura, Biomaterials, 24, 357 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Q. Lu, S. Bai, Z. Ding, H. Guo, Z. Shao, H. Zhu, and D. Kaplan, Adv. Mater. Interfaces, 3, 1500687/1–6 (2016).

    Article  Google Scholar 

  30. H. Jin and D. Kaplan, Nature, 424, 1057 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. J. Jaipaew, P. Wangkulangkul, J. Meesane, P. Raungrut, and P. Puttawibul, Mater. Sci. Eng. C Mater. Biol. Appl., 64, 173 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Y. Feng, X. Li, M. Li, D. Ye, Q. Zhang, R. You and W. Xu, ACS Sustain. Chem. Eng., 7, 6227 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nature Science Foundation of Hubei Province, China (2017CFB578, 2018CFB663), National Nature Science Foundation of China (51403163, 51303141, and 31600774).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renchuan You or Shuqin Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Han, G., Lu, C. et al. Facile Preparation of Mechanical Reinforced and Biocompatible Silk Gels. Fibers Polym 20, 675–682 (2019). https://doi.org/10.1007/s12221-019-1046-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1046-7

Keywords

Navigation