Skip to main content
Log in

Preparation and Properties of Poly(lactic Acid)/PLA-g-ABS Blends

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

PLA/PLA-g-ABS blends were prepared and evaluated for mechanical properties performance. Firstly, carboxylic acid functionalized ABS particles were synthesized by grafting polymethacrylic acid (PMAA) onto ABS particle surface using potassium persulfate as an initiator. The reaction was followed by FTIR analysis. The resultant carboxylated ABS was melt mixed with virgin PLA in an internal mixer to obtain PLA/PLA-g-ABS blends. The obtained PLA/PLA-g-ABS blends were subject to injection molding to obtain specimens for testing evaluation. It was found that impact resistance values significantly outperformed neat PLA by 60 %, 87 %, and 150 % for PLA/PLA-g-ABS 10 wt%, PLA/PLA-g-ABS 20 wt%, and PLA/PLA-g-ABS 30 wt%, respectively. A significant increase in impact strength was contributable to ABS rubber which exhibited even dispersion and good interfacial adhesion. The impact strength was dependent on the percent loading of PLAg-ABS; the more the PLA/PLA-g-ABS the higher the impact strength value. In a similar manner, tensile strength increases when loaded with PLA/PLA-g-ABS albeit at lesser effect. Considering the percent elongation, a massive increase in percent elongation was recorded in case of PLA/PLA-g-ABS 20 wt% and PLA/PLA-g-ABS 30 wt%, implying that these blends were extremely flexible and tough when compared to neat PLA, control, and PLA/PLA-g-ABS 10 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sodergard and M. Stolt, Prog. Polym. Sci., 27, 1123 (2002).

    Article  CAS  Google Scholar 

  2. J. C. Middleton and A. J. Tipton, Biomaterials, 21, 2335 (2000).

    Article  CAS  Google Scholar 

  3. A. P. Gupta and V. Kumar, Eur. Polym. J., 43, 4053 (2007).

    Article  CAS  Google Scholar 

  4. L. Yu, H. Liu, F. Xie, L. Chen, and X. Li, Polym. Eng. Sci., 48, 634 (2008).

    Article  CAS  Google Scholar 

  5. P. A. In’t Veld, E. M. Velner, P. van der Witte, J. Hamhuis, P. Dukstra, and J. Feijen, J. Polym. Sci. Part A. Polym. Chem., 35, 219 (1997).

    Article  Google Scholar 

  6. D. W. Grijpma, A. J. Nijenhuis, P. G. T. van Wijk, and A. J. Pennings, Polym. Bull., 29, 571 (1992).

    Article  CAS  Google Scholar 

  7. M. Hiljanen-Varinio, T. Karjalainen, and J. Seppala, J. Appl. Polym. Sci., 59, 1281 (1996).

    Article  Google Scholar 

  8. C. Min, W. Cui, J. Bei, and S. Wang, Polym. Adv. Technol. 16, 608 (2005).

    Article  CAS  Google Scholar 

  9. Z. X. Zhu, C. D. Xiong, L. L. Zhang, M. L. Yuan, and X. M. Deng, Eur. Polym. J., 35, 1821 (1999).

    Article  CAS  Google Scholar 

  10. M. Shibata, N. Teramoto, and Y. Inoue, Polymer, 48, 2768 (2007).

    Article  CAS  Google Scholar 

  11. L. A. Gaona, J. L. Gómez Ribelles, J. E. Perilla, and M. Lebourg, Polym. Degrad. Stabil., 97, 1621 (2012).

    Article  CAS  Google Scholar 

  12. N. Noroozi, L. Schafer, and S. Hatzikiriakos, Polym. Eng. Sci., 52, 2348 (2012).

    Article  CAS  Google Scholar 

  13. H. Tsuji and H. Muramatsu, J. Appl. Polym. Sci., 81, 2151 (2001).

    Article  CAS  Google Scholar 

  14. N. Zhang, C. Zeng, L. Wang, and J. Ren, J. Polym. Environ., 21, 286 (2013).

    Article  CAS  Google Scholar 

  15. M. Shibata, Y. Inoue, and M. Miyoshi, Polymer, 47, 3557 (2006).

    Article  CAS  Google Scholar 

  16. D. Wu, L. Yuan, E. Laredo, M. Zhang, and W. Zhou, Ind. Eng. Chem. Res., 51, 2290 (2012).

    Article  CAS  Google Scholar 

  17. Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, and E. Baer, Polymer, 44, 5711 (2003).

    Article  CAS  Google Scholar 

  18. W. Phetwarotai, P. Potiyaraj, and D. Aht-Ong, J. Appl. Polym. Sci., 116, 2305 (2010).

    CAS  Google Scholar 

  19. N. Bitinis, R. Verdejo, P. Cassagnau, and M. A. Lopez-Manchado, Mat. Chem. Phy., 129, 823 (2011).

    Article  CAS  Google Scholar 

  20. A. Rigoussen, P. Verge, J. M. Raquez, Y. Habibi, and P. Dubois, Eur. Polym. J. 93, 272 (2017).

    Article  CAS  Google Scholar 

  21. J. A. Brydson, “Plastic Materials”, 7th ed. Oxford: Butterworth-Heinemann, 1999.

    Google Scholar 

  22. X. Q. Liu, R. Y. Bao, Z. Y. Liu, and W. Yang, Polym. Test., 32, 141 (2013).

    Article  CAS  Google Scholar 

  23. P. Wei, G. Tian, H. Yu, and Y. Qian, Polym. Degrad. Stabil., 98, 1022 (2013).

    Article  CAS  Google Scholar 

  24. I. J. Kim, O. S. Kwan, J. B. Park, and H. Joo, Curr. Appl. Phys., 6S1, e43 (2006).

    Article  Google Scholar 

  25. A. Allahverdi, M. Ehsani, H. Janpour, and H. Ahmadi, Prog. Org. Coat., 75, 543 (2012).

    Article  CAS  Google Scholar 

  26. C. Chaikeaw and K. Srikulkit, J. Sol-Gel Sci. Technol., 81, 774 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawee Srikulkit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaikeaw, C., Srikulkit, K. Preparation and Properties of Poly(lactic Acid)/PLA-g-ABS Blends. Fibers Polym 19, 2016–2022 (2018). https://doi.org/10.1007/s12221-018-8320-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8320-y

Keywords

Navigation