Skip to main content
Log in

Silk fibroin/hyaluronic acid porous scaffold for dermal wound healing

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The use of silk protein as a biomaterial has been studied for decades. In this study, silk fibroin (SF)/hyaluronic acid (HA) blend scaffolds were prepared by freeze-drying technique. The structure and properties of the blend scaffolds were examined and analyzed. The results demonstrated that the secondary structures of the SF/HA scaffolds were mainly amorphous and β-sheet structures. The pore radius and porosity of the scaffolds decreased with a decrease in the freezing temperature decrease and an increase in the HA ratio. The pore radius and porosity were regulated from 32.22 μm to 290.76 μm and from 74.1 % to 91.15 %, respectively. In vitro, the SF/HA scaffolds could support the fibroblast cell adhesion and proliferation and showed good cytocompatibility. In vivo, the SF/HA scaffolds were implanted into the dorsum of Sprague Dawley rats to evaluate their bioactivity for dermal tissue reconstruction. The vascular-like structures appeared more rapidly in SF/HA scaffolds than that in the PVA group, and a new dermal layer was formed, as determined by histological analysis. The SF/HA porous scaffolds have promise as a dermal substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Sheridan and R. G. Tompkins, Burns, 25, 97 (1999).

    Article  CAS  Google Scholar 

  2. M. H. Mohammadi, B. H. Araghi, V. Beydaghi, A. Geraili, F. Moradi, P. Jafari, M. Janmaleki, K. P. Valente, M. Akbari, and A. Sanati-Nezhad, Advanced Healthcare Materials, 5, 2459 (2016).

    Article  CAS  Google Scholar 

  3. M. Loss, V. Wedler, W. Kunzi, C. Meuli-Simmen, and V. E. Meyer, Burns, 26, 644 (2000).

    Article  CAS  Google Scholar 

  4. M. C. Robson, R. A. Barnett, I. O. Leitch, and P. G. Hayward, World J. Surg., 16, 87 (1992).

    Article  CAS  Google Scholar 

  5. X. Li, R. You, Z. Luo, G. Chen, and M. Li, J. Mater. Chem. B, 4, 2903 (2016).

    Article  CAS  Google Scholar 

  6. D. J. Wainwiright, Burns, 21, 243 (1995).

    Article  Google Scholar 

  7. E. L. Heck, P. R. Bergstresser, and C. R. Baxtor, J. Trauma., 25, 106 (1985).

    Article  CAS  Google Scholar 

  8. A. Srivastava, E. Z. DeSagun, L. J. Jennings, S. Sethi, A. Phuangsab, M. Hanumadass, H. M. Reyeset, and R. J. Walter, Ann. Surg., 233, 400 (2001).

    Article  CAS  Google Scholar 

  9. S. Yan, Q. Zhang, J. Wang, Y. Liu, S. Lu, M. Li, and D. L. Kaplan, Acta Biomaterialia, 9, 6771 (2013).

    Article  CAS  Google Scholar 

  10. D. P. Orgill, C. Butler, J. F. Regan, M. S. Barlow, I. V. Yannas, and C. C. Compton, Plast Reconstr. Surg., 102, 423 (1998).

    Article  CAS  Google Scholar 

  11. L. Yan, J. M. Oliveira, A. L. Oliveira, and R. L. Reis, J. Tissue Eng. Regen Med., doi:10.1002/term.2226 (2016).

    Google Scholar 

  12. M. Lovett, C. Cannizzaro, L. Daheron, B. Messmer, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials, 28, 5271 (2007).

    Article  CAS  Google Scholar 

  13. Y. Yang, F. Ding, J. Wu, W. Hu, W. Liu, J. Liu, and X. Gu, Biomaterials, 28, 5526 (2007).

    Article  CAS  Google Scholar 

  14. M. R. Sommer, J. R. Vetsch, J. Leemann, R. Müller, A. R. Studart, and S. Hofmann, J. Biomed Mater. Res. Part B: Appl. Biomater., doi: 10.1002/jbm.b.33737 (2016).

    Google Scholar 

  15. C. M. Li, C. Vepari, H. J. Jin, H. J. Kim, and D. L. Kaplan, Biomaterials, 27, 3115 (2006).

    Article  CAS  Google Scholar 

  16. P. Shi, T. K. Teh, S. L. Toh, and J. C. Goh, Biomaterials, 34, 5947 (2013).

    Article  CAS  Google Scholar 

  17. J. Jiang, C. Ai, Z. Zhan, P. Zhang, F. Wan, J. Chen, W. Hao, Y. Wang, J. Yao, Z. Shao, T. Chen, L. Zhou, and S. Chen, Artificial Organs, 40, 385 (2016).

    Article  CAS  Google Scholar 

  18. T. W. Wang, J. S. Sun, H. C. Wu, Y. H. Tsuang, W. H. Wang, and F. H. Lin, Biomaterials, 27, 5689 (2006).

    Article  CAS  Google Scholar 

  19. Y. Yu, Y. Wang, C. Lu, D. Long, Q. Zhang, S. Yan, R. You, and M. Li, Fiber. Polym., 17, 324 (2016).

    Article  CAS  Google Scholar 

  20. W. Tao, M. Li, and R. Xie, Macromol. Mater. Eng., 290, 188 (2005).

    Article  CAS  Google Scholar 

  21. M. Li, Z. Wu, C. Zhang, S. Lu, H. Yan, D. Huang, and H. Ye, J. Appl. Polym. Sci., 79, 2185 (2001).

    Article  CAS  Google Scholar 

  22. Q. Zhang, Y. Zhao, S. Yan, Y. Yang, H. Zhao, M. Li, S. Lu, and D. L. Kaplan, Acta Biomater., 8, 2628 (2012).

    Article  CAS  Google Scholar 

  23. F. Urciuolo, A. Garziano, G. Imparato, V. Panzetta, S. Fusco, C. Casale, and P. A. Netti, Biofabrication, 8, 015010 (2016).

    Article  CAS  Google Scholar 

  24. S. Y. Venyaminov and N. N. Kalnin, Biopolymers, 30, 1243 (1990).

    Article  CAS  Google Scholar 

  25. R. Gilli, M. Kacuráková, M. Mathlouthi, L. Navarini, and S. Paoletti, Carbohydr. Res., 263, 315 (1994).

    Article  CAS  Google Scholar 

  26. Y. S. Chio, S. R. Hong, Y. M. Lee, and Y. S. Nam, Biomed. Mater. Res., 48, 631 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqin Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chen, S., You, R. et al. Silk fibroin/hyaluronic acid porous scaffold for dermal wound healing. Fibers Polym 18, 1056–1063 (2017). https://doi.org/10.1007/s12221-017-1230-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-1230-6

Keywords

Navigation