Skip to main content
Log in

Mapping the influence of electrospinning parameters on the morphology transition of short and continuous nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A theoretical model for the morphology transition of short and continuous nanofibers by electrospinning has been proposed. The influences of polymer concentration, applied voltage, and flow rate on the fabrication of short and continuous nanofibers were mapped for use as a reference in the design and construction of the theoretical model. The morphology transition of short and continuous nanofibers occurred mainly due to changes in the flow rate and voltage. According to the concentration of the polymer in the solution, the map of the short nanofiber region was narrowed as the polymer concentration increased. The theoretical model derived from the conservation of kinetic energy and potential energy experienced by the polymer solution resulted in an equation that could be used to calculate the voltage and flow rates under certain boundary conditions when cutting nanofibers. The boundary conditions for voltage were 4.7-4.9 kV, and the boundary conditions for flow rate were 0.1-1.1 µl/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  2. J. Zhao, N. Si, L. Xu, X. Tang, Y. Song, and Z. Sun, Mater. Chem. Phys., 170, 294 (2016).

    Article  CAS  Google Scholar 

  3. M. S. Kim, J. G. Son, H. J. Lee, H. Hwang, C. H. Choi, and G. H. Kim, Curr. Appl. Phys., 14, 1 (2014).

    Article  Google Scholar 

  4. I. W. Fathona and A. Yabuki, Curr. Appl. Phys., 14, 761 (2014).

    Article  Google Scholar 

  5. M. M. Munir, A. B. Suryamas, F. Iskandar, and K. Okuyama, Polymer, 50, 4935 (2009).

    Article  CAS  Google Scholar 

  6. C. J. Luo, E. Stride, and M. Edirisinghe, Macromolecules, 45, 4669 (2012).

    Article  CAS  Google Scholar 

  7. A. Awal, M. Sain, and M. Chowdhury, Compos. Pt. BEng., 42, 1220 (2011).

    Article  Google Scholar 

  8. Yördem, M. Papila, and Y. Z. Menceloglu, Mater. Des., 29, 34 (2008).

    Article  Google Scholar 

  9. S. V. Fridrikh, Y. H. Jian, B. P. Michael, and R. C. Gregory, Phys. Rev. Lett., 90, 144502 (2003).

    Article  Google Scholar 

  10. Z. Zhang, H. Wang, C. Qin, S. Chen, X. Ji, K. Sun, M. Chen, R. Fan, and X. Han, Mater. Des., 89, 543 (2016).

    Google Scholar 

  11. A. Colantoni and K. Boubaker, Carbohydr. Polym., 101, 307 (2014).

    Article  CAS  Google Scholar 

  12. X. Lan, W. Yue, and N. Yasir, Comput. Math. Appl., 61, 2116 (2011).

    Article  Google Scholar 

  13. X. Lan, L. Fujuan, and F. Naeem, Comput. Math. Appl., 64, 1017 (2012).

    Article  Google Scholar 

  14. I. W. Fathona and A. Yabuki, J. Mater. Sci., 49, 3519 (2014).

    Article  CAS  Google Scholar 

  15. A. Wagh, J. Singh, S. Qian, and B. Law, Nanomedicine, 9, 449 (2013).

    CAS  Google Scholar 

  16. L. Fu, Y. Wu, F. Li, and B. Zhang, Mater. Lett., 109, 225 (2013).

    Article  CAS  Google Scholar 

  17. S. Jiang, G. Duan, J. Schöbel, S. Agarwal, and A. Greiner, Compos. Sci. Technol., 88, 57 (2013).

    Article  CAS  Google Scholar 

  18. R. Konwarh, N. Karak, and M. Misra, Biotechnol. Adv., 31, 421 (2013).

    Article  CAS  Google Scholar 

  19. S. Tungprapa, T. Puangparn, M. Weerasombut, I. Jangchud, P. Fakum, S. Semongkhol, C. Meechaisue, and P. Supaphol, Cellulose, 14, 563 (2007).

    Article  CAS  Google Scholar 

  20. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    Article  CAS  Google Scholar 

  21. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  22. J. Y. Chen, H. C. Chen, J. N. Lin, and C. Kuo, Mater. Chem. Phys., 107, 480 (2008).

    Article  CAS  Google Scholar 

  23. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000).

    Article  CAS  Google Scholar 

  24. C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H. Reneker, Polymer, 48, 6913 (2007).

    Article  CAS  Google Scholar 

  25. K. Nasouri, A. M. Shoushtari, and M. R. M. Mojtahedi, Fiber. Polym., 16, 1941 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Yabuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathona, I.W., Yabuki, A. Mapping the influence of electrospinning parameters on the morphology transition of short and continuous nanofibers. Fibers Polym 17, 1238–1244 (2016). https://doi.org/10.1007/s12221-016-6241-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6241-1

Keywords

Navigation