Skip to main content
Log in

A novel biodegradable polyurethane based on hydroxylated polylactic acid and tung oil mixtures. I. Synthesis, physicochemical and biodegradability characterization

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A novel biodegradable polylactic acid-based polyurethane (PU) was synthesized via a chain extension reaction between hydroxylated polylactic acid (PLA-OH) and hydroxylated tung oil (HTO) using 1,6-hexamethylene diisocyanate (HDI) to link the two polyols and dibutyltin dilaurate (DBTDL) as a catalyst. Both PLA-OH and HTO, as polyols, were separately synthesized in our laboratory. Three different molecular weights of PLA-OH prepolymers were used, and the molar ratio of PLA-OH to HTO was also changed to investigate the effect of these two parameters on the structure and properties of the final PUs. Chemical structures of PLA-OH, HTO, and final PUs were investigated by Fourier transform infrared (FTIR) and Hydrogen-1 nuclear magnetic resonance (1HNMR) spectroscopies. Thermal transitions and thermal stability of the final PUs were, respectively, studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The FTIR and 1HNMR results showed that the chain-extension reaction of the two polyols with HDI was sufficiently achieved. The TGA results showed that the polyurethanes based on the lower molecular weight PLA segments were more thermally stable; it was not degraded up to 270 °C. DSC results showed that incorporating HTO in the PU chains led to formation of more flexible PU chains, while the glass transition temperatures of the PUs of higher PLA-OH molecular weights were higher than those of lower ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Nair and C. T. Laurencin, Prog. Polym. Sci., 32, 762 (2007).

    Article  CAS  Google Scholar 

  2. S. Singh and S. S. Ray, J. Nanosci. Nanotechnol., 7, 2596 (2007).

    Article  CAS  Google Scholar 

  3. M. Mochizuki, Biopolymers, 4, 1 (2002).

    CAS  Google Scholar 

  4. M. Yamamoto, U. Witt, G. Skupin, D. Beimborn, and R. J. Mueller, Biopolymers, 4, 299 (2002).

    CAS  Google Scholar 

  5. Y. Choi, S. Y. Kim, S. H. Kim, K. S. Lee, C. Kim, and Y. Byun, Int. J. Pharm., 215, 67 (2001).

    Article  CAS  Google Scholar 

  6. T. W. Chung, Y. Y. Huang, and Y. Z. Liu, Int. J. Pharm., 212, 161 (2001).

    Article  CAS  Google Scholar 

  7. K. H. Lam, A. J. Nijenhuis, H. Bartels, A. R. Postema, M. F. Jonkman, A. J. Pennings, and P. Nieuwenhuis, J. Appl. Biomater., 6, 191 (1995).

    Article  CAS  Google Scholar 

  8. M. Yoneda, K. Hayashida, K. Izawa, K. Shimada, and K. Shino, Arthroscopy, 12, 293 (1996).

    Article  CAS  Google Scholar 

  9. S. Vainionpaa, P. Rokkanen, and P. Tormala, Prog. Polym. Sci., 14, 616 (1989).

    Article  Google Scholar 

  10. P. X. Ma, R. Zhang, G. Xiao, and R. J. Franceschi, Biomed. Mater. Res., 54, 284 (2000).

    Article  Google Scholar 

  11. K. Y. Kim and I. J. Chin, Polym. Prepr., 44, 890 (2003).

    CAS  Google Scholar 

  12. T. R. Cooper and F. S. Robson, Macromolecules, 41, 55 (2008).

    Article  Google Scholar 

  13. J. Borda, I. Bodnar, S. Keki, L. Sipos, and M. Zsuga, J. Polym. Sci. Pol. Chem., 38, 2925 (2000).

    Article  CAS  Google Scholar 

  14. J. B. Zeng, Y. D. Li, Q. Y. Zhu, K. K. Yang, X. L. Wang, and Y. Z. Wang, Polymer, 50, 1178 (2009).

    Article  CAS  Google Scholar 

  15. J. B. Zeng, Y. D. Li, W. D. Li, K. K. Yang, X. L. Wang, and Y. Z. Wang, Ind. Eng. Chem. Res., 48, 1706 (2009).

    Article  CAS  Google Scholar 

  16. O. Jeon, S. H. Lee, S. H. Kim, Y. M. Lee, and Y. H. Kim, Macromolecules, 36, 5585 (2003).

    Article  CAS  Google Scholar 

  17. W. Chen, W. Luo, S. Wang, and J. Bei, Polym. Adv. Technol., 14, 245 (2003).

    Article  CAS  Google Scholar 

  18. D. Pospiech, H. Komber, D. Jehnichen, L. Haussler, K. Eckstein, H. Scheibner, A. Janke, H. R. Kricheldorf, and O. Petermann, Biomacromolecules, 6, 439 (2005).

    Article  CAS  Google Scholar 

  19. D. Cohn and A. Hotovely-Salomon, Polymer, 46, 2068 (2005).

    Article  CAS  Google Scholar 

  20. J. Borda, I. Bodnar, I. Rathy, and M. Zsuga, Polym. Adv. Technol., 14, 813 (2003).

    Article  CAS  Google Scholar 

  21. J. Kylma and J. V. Seppala, Macromolecules, 30, 2876 (1997).

    Article  Google Scholar 

  22. D. Cohn and A. F. Salomon, Biomaterials, 26, 2297 (2005).

    Article  CAS  Google Scholar 

  23. E. C. Wood, “Tung Oil: A New American Industry”, pp.30–44, U.S. Government Printing Office, Washington, DC, 1949.

    Google Scholar 

  24. X. Kong and S. S. Narine in “Industrial and Consumer Nonedible Products from Oils and Fats” (F. Shahidi Ed.), pp.279–281, Wiley, New York, 2005.

  25. S. N. Khot, J. J. Lascala, E. Can, S. S. Morye, G. I. Williams, G. R. Palmese, S. H. Kusefoglu, and R. P. Wool, J. Appl. Polym. Sci., 82, 703 (2001).

    Article  CAS  Google Scholar 

  26. K. S. Chian and L. H. Gan, J. Appl. Polym. Sci., 68, 509 (1998).

    Article  CAS  Google Scholar 

  27. A. Guo, I. Javni, and Z. Petrovic, J. Appl. Polym. Sci., 77, 467 (2000).

    Article  CAS  Google Scholar 

  28. Y. H. Hu, Y. Gao, D. N. Wang, C. P. Hu, S. Zu, L. Vanoverloop, and D. Randall, J. Appl. Polym. Sci., 84, 591 (2002).

    Article  CAS  Google Scholar 

  29. M. A. Corcuera, L. Rueda, B. Fernandez d’Arlas, A. Arbelaiz, C. Marieta, I. Mondragon, and A. Eceiza, Polym. Degrad. Stabil., 95, 2175 (2010).

    Article  CAS  Google Scholar 

  30. M. A. Mosiewicki, U. Casado, N. E. Marcovich, and M. I. Aranguren, Polym. Eng. Sci., 49, 685 (2009).

    Article  CAS  Google Scholar 

  31. H. Izadi-Vasafi, G. Mir Mohamad Sadeghi, and H. Garmabi, J. Appl. Polym. Sci., 125, E604 (2012).

    Article  CAS  Google Scholar 

  32. K. Hiltunen, M. Härkönen, J. V. Seppälä, and T. Väänänen, Macromolecules, 29, 8677 (1996).

    Article  CAS  Google Scholar 

  33. Y. Tezuka, N. Ishii, K. Kasuya, and H. Mitomo, Polym. Degrad. Stabil., 84, 115 (2004).

    Article  CAS  Google Scholar 

  34. K. Hiltunen, J. V. Seppala, and M. Harkonen, J. Appl. Polym. Sci., 63, 1091 (1997).

    Article  CAS  Google Scholar 

  35. M. M. Coleman, K. H. Lee, D. J. Skrovanek, and P. C. Painter, Macromolecules, 19, 2149 (1986).

    Article  CAS  Google Scholar 

  36. C. W. Meuse, X. Yang, D. Yang, and S. L. Hsu, Macromolecules, 25, 925 (1992).

    Article  CAS  Google Scholar 

  37. M. Amrollahi, G. Mir Mohamad Sadeghi, and Y. Kashcooli, Mater. Des., 32, 3933 (2011).

    Article  CAS  Google Scholar 

  38. M. V. Pergal, V. V. Antic, M. N. Govedarica, D. Goäevac, S. Ostojic, and J. Donlagic, J. Appl. Polym. Sci., 122, 2715 (2011).

    Article  CAS  Google Scholar 

  39. E. G. Bajsic, V. Rek, A. Sendijarevic, V. Sendijarevic, and K. C. Frisch, J. Elastom. Plast., 32, 163 (2000).

    Article  Google Scholar 

  40. R. W. Seymour and S. L. Cooper, Macromolecules, 6, 48 (1973).

    Article  CAS  Google Scholar 

  41. R. W. Seymour, G. M. Estes, and S. L. Cooper, Macromolecules, 3, 579 (1970).

    Article  Google Scholar 

  42. J. T. Koberstein and T. P. Russell, Macromolecules, 19, 714 (1986).

    Article  CAS  Google Scholar 

  43. J. T. Koberstein, A. F. Galambos, and L. M. Leung, Macromolecules, 25, 6195 (1992).

    Article  CAS  Google Scholar 

  44. L. M. Leung and J. T. Koberstein, J. Polym. Sci. Polym. Phys. Ed., 23, 1883 (1985).

    Article  CAS  Google Scholar 

  45. A. Saiani, W. A. Daunch, H. Verbeke, J. W. Leenslag, and J. S. Higgins, Macromolecules, 34, 9059 (2001).

    Article  CAS  Google Scholar 

  46. A. Saiani, C. Rochas, G. Eeckhaut, W. A. Daunch, J. W. Leenslag, and J. S. Higgins, Macromolecules, 37, 1411 (2004).

    Article  CAS  Google Scholar 

  47. W. Cooper, R. W. Pearson, and S. Darke, The Industrial Chemist, 36, 121 (1960).

    CAS  Google Scholar 

  48. S. Gogolewski, Colloid. Polym. Sci., 267, 757 (1989).

    Article  CAS  Google Scholar 

  49. Z. S. Petrovic and J. Ferguson, Prog. Polym. Sci., 16, 695 (1991).

    Article  CAS  Google Scholar 

  50. H. F. Mark, “Encyclopedia of Polymer Science and Technology”, 2nd ed., pp.1988–1990, Wiley-Interscience, New York, 1998.

    Google Scholar 

  51. D. J. Lyman, Rev. Macromol. Chem., 1, 191 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Izadi-Vasafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi-Vasafi, H., Sadeghi, G.M.M., Babaei, A. et al. A novel biodegradable polyurethane based on hydroxylated polylactic acid and tung oil mixtures. I. Synthesis, physicochemical and biodegradability characterization. Fibers Polym 17, 311–323 (2016). https://doi.org/10.1007/s12221-016-5361-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5361-y

Keywords

Navigation