Skip to main content
Log in

Processing technique and uniformity affecting tensile strength and hydrophobicity properties of glass wool felt

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Glass wool felt (GWF) made from glass wool and phenolic resin adhesive is prospected to have a promising future in sound insulation of aircraft. In this paper, the GWF was fabricated by centrifugal-spinneret-blow (CSB), and there were two different methods to guide the glass wool, which were free float type (FFT) and guided swing cylinder (GSC), with GSC being designed as uniform processes. The tensile strength and hydrophobicity properties of GWF from these two methods were compared. The experimental results suggested that tensile strength and hydrophobicity properties of GWF by GSC were greater, with non-uniformity being 5 %. The tensile strength, breaking length and elastic deformation of GWF were obtained during the GWF manufactured by GSC with fibers being in 2-D distribution, and the phase difference of the swing cylinders being π/2+2. The maximum static contact angle and minimum water repellency of GWF produced by GSC were 141 ° and 15 g, while for FFT they were 100 ° and 26.92 g, respectively. The uniformity of GWF’s smooth surface was accompanied by excellent hydrophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. É. Goryainov, R. M. Serafimova, and V. I. Pestsov, Glass Ceram., 34, 294 1977.

    Article  Google Scholar 

  2. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, Compos. Pt. B-Eng., 42, 856 2011.

    Article  Google Scholar 

  3. B. Champagne and R. Angers, Int. J. Powder Metall. Powder Technol., 16, 359 1980.

    Google Scholar 

  4. Y. Z. Liu, K. Minagawa, H. Kakisawa, and K. Halada, Int. J. Powder Metall., 39, 29 2003.

    CAS  Google Scholar 

  5. H. L. Cox, Br. J. Appl. Phys., 3, 72 1952.

    Article  Google Scholar 

  6. C. F. Yang, Ph.D. Thesis, University of Washington, 1975.

    Google Scholar 

  7. M. Rigdahl, B. Westerlind, and H. Hollmark, J. Mater. Sci., 19, 3945 1984.

    Article  Google Scholar 

  8. S. Heyden, Ph.D. Thesis, Lund University, 2000.

    Google Scholar 

  9. N. Venkateshwaran, A. Elayaperumal, and G. K. Sathiya, Compos. Pt. B-Eng., 43, 793 2012.

    Article  CAS  Google Scholar 

  10. A. Ridruejo, C. González, and J. Lorca, J. Mech. Phys. Solids, 58, 1628 2010.

    Article  CAS  Google Scholar 

  11. M. S. Rizvi, P. Kumar, D. S. Katti, and A. Pal, Acta Biomater., 8, 4111 2012.

    Article  CAS  Google Scholar 

  12. A. Kulachenko, T. Denoyelle, S. Galland, and S. B. Lindström, Cellulose, 19, 793 2012.

    Article  CAS  Google Scholar 

  13. S. Borodulina, A. Kulachenko, S. Galland, and M. Nygårds, J. Pulp. Pap. Sci., 27, 318 2012.

    Article  CAS  Google Scholar 

  14. Y. Z. Liu, Mater. Sci. Technol., 18, 929 2002.

    Article  CAS  Google Scholar 

  15. B.-Y. Chen, Y.-S. Wang, H. Y. Mi, P. Yu, T. R. Kuang, X. F. Peng, and J. S. Wen, J. Appl. Polym. Sci., 131, 41181 2014.

    Google Scholar 

  16. Y. Zhaogang, G. Awuti, C. Yi, Z. Jing, W. Boshen, W. Jianchen, L. Wanliang, Z. Xuan, and Z. Qiang, J. Chinese Pharm. Sci., 15, 69 2006.

    Article  Google Scholar 

  17. L. Chang, M. Howdyshell, W. C Liao, C. L. Chiang, D. GallegoPerez, Z. Yang, W. Lu, J. C. Byrd, N. Muthusamy, L. J. Lee, and R. Sooryakumar, Small, 11, 1818 2015.

    Article  CAS  Google Scholar 

  18. V. Tarnow, J. Acoust. Soc. Am., 111, 2735 2002.

    Article  CAS  Google Scholar 

  19. B. Sirok, B. Blagojevic, and M. Novak, Glass Technol., 43, 188 2002.

    CAS  Google Scholar 

  20. B. Blagojevic and B. Sirok, Glass Technol., 43, 120 2002.

    CAS  Google Scholar 

  21. S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Phys. Rev. Lett., 90, 1 2003.

    Article  Google Scholar 

  22. E. P. S. Tan and C. T. Lim, Compos. Sci. Technol., 66, 1102 2006.

    Article  CAS  Google Scholar 

  23. J. L. Thomasson and M. A. Vlug, Compos. Pt. A-Appl. Sci. Manuf., 127, 477 1996.

    Article  Google Scholar 

  24. M. Latva-Kokko and H. Rothman, Phys. Rev. E, 72, 046701 2005.

    Article  CAS  Google Scholar 

  25. D. Janssen, R. D. Palma, S. Verlaak, P. Heremans, and W. Dehaen, Thin Solid Films, 515, 1433 2006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, Z., Chen, Z. et al. Processing technique and uniformity affecting tensile strength and hydrophobicity properties of glass wool felt. Fibers Polym 16, 1587–1594 (2015). https://doi.org/10.1007/s12221-015-5310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5310-1

Keywords

Navigation