Skip to main content
Log in

A new hybrid artificial intelligence approach to predicting global thermal comfort of stretch knitted fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Today numerous consumers consider thermal comfort to be one of the most significant attributes when purchasing textile and apparel products, so there is a need to develop a model able to simulate objectively the consumers’ perception. The global thermal comfort of stretch knitted fabrics is a multi-criteria phenomenon that requires the satisfaction of several properties at the same time. In this paper, we used the desirability functions to evaluate the satisfaction degree of global thermal comfort. Statistical method was used to investigate the interrelationship among knit thermo-physical properties, and group them into factors. Two models of artificial neural network (general and special) have been set up to predict the global thermal comfort from structural parameters (inputs) of knitted fabrics made from pure yarn cotton (cellulose) and viscose (regenerated cellulose) fibers and plated knitted with elasthane (Lycra) fibers. A virtual leave one out approach dealing with over fitting phenomenon and allowing the selection of the optimal neural network architecture was used. By combining the strengths of statistics and fuzzy logic (data reduction and information summation) also a neural network (self-learning ability), hybrid model was developed to simulate the consumer thermal comfort perception. After that, ANN model is inverted. With a required output value and some input parameters it is possible to calculate the unknown optimum input parameter. Finally, this forecasting can help industrials to anticipate the consumer’s taste. Thus, they can adjust the knitting production parameter to reach the desired global thermal comfort to satisfy this consumer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, “The Science of Clothing Comfort”, p.135, The Textile Institute, UK, 2001.

    Google Scholar 

  2. N. R. S. Hollies and R. F. G. Goldman, “Clothing Comfort-Interaction of Thermal, Ventilation, Construction and Assessment Factors”, p.189, Ann Arbor Science Publishers, Michigan, 1975.

    Google Scholar 

  3. K. Slater, J. Text. Inst., 77, 157 (1986).

    Article  Google Scholar 

  4. Y. Li, Text. Prog., 31, 1 (2001).

    Article  Google Scholar 

  5. H. Zhang, Ph. D. Dissertation, UCB, Berkeley, 2003.

    Google Scholar 

  6. D. A. Watkins and K. Slater, J. Text. Inst., 72, 11 (1981).

    Article  Google Scholar 

  7. M. S. Parmar and S. K. Srivastava, Ind. J. Fiber. Text. Res., 24, 41 (1999).

    CAS  Google Scholar 

  8. L. Schacher, D. C. Adolphe, and J. Y. Drean, Int. J. Cloth. Sci. Tech., 12, 84 (2000).

    Article  Google Scholar 

  9. M. J. Pac, M. A. Bueno, and M. Renner, Text. Res. J., 71, 806 (2001).

    Article  CAS  Google Scholar 

  10. B. Le Pechoux, R. M. Laing, Y. Li, A. Bookset, T. K. Ghosh, and G. G. Sleivert, “The Science of Clothing Comfort”, p.138, The Textile Institute, Manchester, 2001.

    Google Scholar 

  11. N. Ozdil, A. Marmarali, and D. Kretzschmar, Int. J. Therm. Sci., 46, 1318 (2007).

    Article  Google Scholar 

  12. A. Das and S. M. Ishtiaque, J. Text. Appar. Tech. Manag., 3, 1 (2004).

    Google Scholar 

  13. G. Ozçelik, A. Çay, and E. Kirtay, Fibres Text. East. Eur., 15, 55 (2007).

    Google Scholar 

  14. N. Ucar and T. Yilmaz, Fibres Text. East. Eur., 12, 34 (2005).

    Google Scholar 

  15. N. Oglakcioglu and A. Marmarali, Fibres Text. East. Eur., 15, 94 (2007).

    CAS  Google Scholar 

  16. R. Ciukas, A. Jovita, and K. Paulius, Fibres Text. East. Eur., 18, 89 (2010).

    Google Scholar 

  17. G. D. Šajn, K. Dimitrovski, and K. M. Bizja, Text. Res. J., 82, 1498 (2012).

    Article  Google Scholar 

  18. S. Tezel and Y. Kavusturan, Text. Res. J., 78, 966 (2008).

    Article  CAS  Google Scholar 

  19. S. B. Stankovic, D. Popovic, and G. B. Poparic, Polym. Test., 27, 41 (2008).

    Article  CAS  Google Scholar 

  20. C. A. Pavko and E. U. Stankovic, Acta Chim. Slov., 57, 957 (2010).

    Google Scholar 

  21. S. E. G. Jeguirim, A. B. Dhouieb, M. Sahnoun, M. Cheikhrouhou, L. Schacher, and D. Adolphe, J. Intell. Manuf., 22, 873 (2011).

    Article  Google Scholar 

  22. D. Bhattacharjee and V. K. Kothari, Text. Res. J., 77, 4 (2007).

    Article  CAS  Google Scholar 

  23. F. Fayala, H. Alibi, A. Jemni, and X. Zeng, J. Eng. Fiber. Fabr., 3, 53 (2008).

    Google Scholar 

  24. A. Majumdar, J. Text. Inst., 102, 752 (2011).

    Article  CAS  Google Scholar 

  25. H. Alibi, F. Fayala, A. Jemni, and X. Zeng, Special Topics & Reviews in Porous Media, 3, 35 (2012).

    Article  Google Scholar 

  26. H. Alibi, F. Fayala, A. Jemni, and X. Zeng, J. Appl. Sci., 12, 2283 (2012).

    Article  Google Scholar 

  27. H. Alibi, F. Fayala, N. Bhouri, A. Jemni, and X. Zeng, J. Text. Inst., 104, 766 (2013).

    Article  Google Scholar 

  28. A. S. W. Wong, Y. Li, and P. K. W. Yeung, Text. Res. J., 73, 31 (2003).

    Article  CAS  Google Scholar 

  29. A. S. W. Wong, Y. Li, and P. K. W. Yeung, Fiber J., 59, 11 (2003).

    Google Scholar 

  30. A. S. W. Wong, Y. Li, and P. K. W. Yeung, Text. Res. J., 74, 13 (2004).

    Article  CAS  Google Scholar 

  31. A. S. W. Wong, Y. Li, and P. K. W. Yeung, J. Text. Inst., 93, 108 (2002).

    Article  Google Scholar 

  32. C. Vigneswaran, K. Chandrasekaran, and P. Senthilkumar, J. Ind. Text., 38, 289 (2009).

    Article  Google Scholar 

  33. A. Koblyakov, “Laboratory Practice in the Study of Textile Materials”, p.384, Mir Publishers, Moscow, 1989.

    Google Scholar 

  34. B. Das, V. K. Kothari, R. Fanguiero, and M. De Araujo, Fiber. Polym., 9, 225 (2008).

    Article  Google Scholar 

  35. L. Hes, Vlakna a Textil, 7, 91 (2000).

    Google Scholar 

  36. L. Hes, Int. J. Cloth. Sci. Tech., 11, 105 (1999).

    Article  Google Scholar 

  37. L. Hes, J. Hanzl, I. Dolezal, and Z. Miklas, Melliand Text. Int., 71, 679 (1990).

    Google Scholar 

  38. L. Hes and I. Dolezal, J. Text. Mash. Soc. Jpn., 42, 124 (1989).

    Article  Google Scholar 

  39. N. Ucar and T. Yilmaz, Fibres Text. East. Eur., 12, 34 (2005).

    Google Scholar 

  40. G. Derringer and R. Suich, J. Qual. Technol., 12, 214 (1980).

    Google Scholar 

  41. Y. Oussar, G. Monari, and G. Dreyfus, Neural Comp., 16, 419 (2004).

    Article  Google Scholar 

  42. G. Monari and G. Dreyfus, Neural Comp., 14, 1481 (2002).

    Article  Google Scholar 

  43. F. Fayala, H. Alibi, A. Jemni, and X. Zeng, Fiber. Polym., 15, 855 (2014).

    Article  CAS  Google Scholar 

  44. M. Tushir and S. Srivastava, Appl. Soft Comp., 10, 381 (2010).

    Article  Google Scholar 

  45. U. Teeboonma, J. Tiansuwan, and S. Soponronnarit, J. Food. Eng., 59, 369 (2003).

    Article  Google Scholar 

  46. J. R. Dutta, P. K. Dutta, and R. Banerjee, Process Biochem., 39, 2193 (2004).

    Article  CAS  Google Scholar 

  47. D. S. Lee and Y. R. Pyun, Dry. Technol., 11, 1025 (1993).

    Article  CAS  Google Scholar 

  48. D. M. Elustondo, A. S. Mujumdar, and M. J. Urbicain, Dry. Technol., 20, 381 (2002).

    Article  CAS  Google Scholar 

  49. J. A. Hernández, D. Colorado, O. Cortés-Aburto, Y. El Hamzaoui, V. Velazquez, and B. Alonso, Appl. Therm. Eng., 50, 1399 (2013).

    Article  Google Scholar 

  50. J. Labus, J. A. Hernández, J. C. Bruno, and A. Coronas, Renew. Energy, 39, 471 (2012).

    Article  Google Scholar 

  51. O. Cortés, G. Urquiza, and J. A. Hernández, Appl. Energy, 86, 2487 (2009).

    Article  Google Scholar 

  52. J. A. Hernández, Food Control, 20, 435 (2009).

    Article  Google Scholar 

  53. Y. El-Hamzaoui, J. A. Hernández, S. Silva-Martínez, A. Bassam, A. Álvarez, and C. Lizama-Bahena, Desalination, 277, 325 (2011).

    Article  CAS  Google Scholar 

  54. M. Laidi and S. Hanini, Int. J. Refreg., 36, 247 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Alibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayala, F., Alibi, H., Jemni, A. et al. A new hybrid artificial intelligence approach to predicting global thermal comfort of stretch knitted fabrics. Fibers Polym 16, 1417–1429 (2015). https://doi.org/10.1007/s12221-015-1417-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-1417-7

Keywords

Navigation