Skip to main content
Log in

Off-axis tensile properties of multistitched plain woven E-glass/polyester composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The aim of this study was to understand the ±45 ° directional off-axis tensile properties of the developed two dimensional (2D) multistitched multilayer E-glass/polyester woven composites. It was found that the off-axis tensile strength of the unstitched structure was slightly higher than those of the multistitched structures. The reason was that the multistitching process caused the filament breakages. It was also found that when the stitching direction and stitching density in structures increased, their off-axis tensile modulus decreased. Therefore, stitching directions, stitching density and stitching yarn on the composite structures were considered as important parameters. All structures under the off-axis tensile load had normal deformation, or angular deformation or shrinkage in width. In addition, both the normal deformation and the shrinkages in width occurred in most of the two and four directional stitched structures. On the other hand, four directional Kevlar® 129 yarn dense stitched E-glass/polyester structure showed only shrinkage in width after angular deformation. This could be considered as a new failure mode because of the multistitching. These results indicated that the stitching directions and density generally influenced the off-axis tensile properties of the multistitched E-glass/polyester woven composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Dow and H. B. Dexter, NASA/TP-97-206234, 1997.

  2. R. Kamiya, B. A. Cheeseman, P. Popper, and T. W. Chou, Compos. Sci. Technol., 60, 33 (2000).

    Article  Google Scholar 

  3. T. W. Chou, “Microstructural Design of Fibre Composites”, pp.1–26, Cambridge University Press, Cambridge, 1992.

    Book  Google Scholar 

  4. B. N. Cox, M. S. Dadkhah, W. L. Morris, and J. G. Flintoff, ACTA Metallurgica et Materialia, 42, 3967 (1994).

    Article  CAS  Google Scholar 

  5. J. Brandt, K. Drechsler, and F. J. Arendts, Compos. Sci. Technol., 56, 381 (1996).

    Article  Google Scholar 

  6. H. B. Dexter and G. H. Hasko, Compos. Sci. Technol., 51, 367 (1996).

    Article  Google Scholar 

  7. K. Bilisik and B. Yilmaz, Text. Res. J., 82, 336 (2012).

    Article  CAS  Google Scholar 

  8. M. L. Realff, Text. Res. J., 64, 135 (1994).

    Article  Google Scholar 

  9. M. L. Realff, M. C. Boyce, and S. Backer, Text. Res. J., 67, 445 (1997).

    Google Scholar 

  10. W. D. Freeston Jr, M. M. Platt, and M. M. Schoppee, Text. Res. J., 37, 948 (1967).

    Article  Google Scholar 

  11. A. P. Mouritz, K. H. Leong, and I. Herszberg, Compos. Part A-Appl. S., 28, 979 (1997).

    Article  Google Scholar 

  12. A. P. Mouritz, Proc. Inst. Mech. Eng., J. Mat: Design App., 218, 87 (2004).

    Article  Google Scholar 

  13. T. J. Kang and S. H. Lee, J. Compos. Mat., 28, 1574 (1994).

    Article  Google Scholar 

  14. A. P. Mouritz, J. Gallagher, and A. A. Goodwin, Compos. Sci. Technol., 57, 509 (1997).

    Article  CAS  Google Scholar 

  15. G. L. Farley and L. C. Dickinson, J. Reinf. Plast. Compos., 11, 633 (1992).

    Article  Google Scholar 

  16. E. Wu and J. Wang, J. Compos. Mat., 29, 2254 (1995).

    Article  Google Scholar 

  17. S. A. Tekalur, K. Shivakumar, and A. Shukla, Compos. Part B, 39, 57 (2008).

    Article  Google Scholar 

  18. L. C. Dickinson, G. L. Farley, and M. K. Hinders, J. Comp. Mat., 33, 1002 (1999).

    Article  CAS  Google Scholar 

  19. K. T. Tan, N. Watanabe, and Y. Iwahori, Int. J. Damage Mech., 21, 51 (2012).

    Article  CAS  Google Scholar 

  20. K. T. Tan, N. Watanabe, Y. Iwahori, and T. Ishikawa, Compos. Part A-Appl. S., 43, 823 (2012).

    Article  CAS  Google Scholar 

  21. R. Velmurugan and S. Solaimurugan, Compos. Sci. Tech., 67, 61 (2007).

    Article  CAS  Google Scholar 

  22. Y. Wei and J. Zhang, Compos. Part A-Appl. S., 39, 815 (2008).

    Article  Google Scholar 

  23. E. Wu and J. Wang, J. Compos. Mat., 29, 2254 (1995).

    Article  Google Scholar 

  24. N. Zhao, H. Rodel, C. Herzberg, S. L. Gao, and S. Krzywinsky, Compos. Part A-Appl. S., 40, 635 (2009).

    Article  Google Scholar 

  25. U. Beier, F. Fischer, J. K. V. Sandler, V. Altstadt, C. Weimer, and W. Buchs, Compos. Part A-Appl. S., 38, 1655 (2007).

    Article  Google Scholar 

  26. G. L. Farley, B. L. Smith, and J. Maiden, J. Reinf. Plast. Compos., 11, 787 (1992).

    Article  CAS  Google Scholar 

  27. C. Lee and D. Liu, J. Eng. Mat. Tech., 112, 125 (1990).

    Article  Google Scholar 

  28. K. T. Tan, N. Watanabe, and Y. Iwahori, Int. J. Damage Mech., 21, 51 (2012).

    Article  CAS  Google Scholar 

  29. K. T. Tan, N. Watanabe, and Y. Iwahori, Compos. Part BEng., 42, 874 (2012).

    Google Scholar 

  30. G. Chen, Z. Li, C. Kou, and L. Gui, J. Reinf. Plast. Compos., 23, 987 (2004).

    Article  Google Scholar 

  31. C. Xiaoquan, A. M. Al-Mansour, L. Zhengneng, and K. Chenghe, J. Reinf. Plast. Compos., 24, 935 (2005).

    Article  Google Scholar 

  32. T. C. Truong, M. Vettori, S. Lomov, and I. Verpoest, Compos. Part A-Appl. S., 36, 1207 (2005).

    Article  Google Scholar 

  33. C. Weimer and P. Mitschang, Compos. Part A-Appl. S., 32, 1477 (2001).

    Article  Google Scholar 

  34. L. Lee, S. R. Clark, A. P. Mouritz, M. K. Bannister, and I. Herszberg, Compos. Struct., 57, 405 (2007).

    Article  Google Scholar 

  35. K. Bilisik, J. Reinf. Plast. Compos., 29, 1173 (2010).

    Article  CAS  Google Scholar 

  36. M. H. Mohamed and A. K. Bilisik, U.S. Patent, 5465760 (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Bilisik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilisik, K., Yolacan, G. Off-axis tensile properties of multistitched plain woven E-glass/polyester composites. Fibers Polym 15, 589–598 (2014). https://doi.org/10.1007/s12221-014-0589-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0589-x

Keywords

Navigation