Skip to main content
Log in

Improving thermal conductivity of cotton fabrics using composite coatings containing graphene, multiwall carbon nanotube or boron nitride fine particles

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Graphene, multi-wall carbon nanotube (MWCNT) and fine boron nitride (BN) particles were separately applied with a resin onto a cotton fabric, and the effect of the thin composite coatings on the thermal conductive property, air permeability, wettability and color appearance of the cotton fabric was examined. The existence of the fillers within the coating layer increased the thermal conductivity of the coated cotton fabric. At the same coating content, the increase in fabric thermal conductivity was in the order of graphene > BN > MWCNT, ranging from 132 % to 842 % (based on pure cotton fabric). The coating led to 73 %, 69 % and 64 % reduction in air permeability when it respectively contained 50.0 wt% graphene, BN and MWCNTs. The graphene and MWCNT treated fabrics had a black appearance, but the coating had almost no influence on the fabric hydrophilicity. The BN coating made cotton fabric surface hydrophobic, with little change in fabric color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mondal, Appl. Therm. Eng., 28, 1536 (2008).

    Article  CAS  Google Scholar 

  2. S. B. Stankovic, D. Popovic, and G. B. Poparic, Polym. Test., 27, 41 (2008).

    Article  CAS  Google Scholar 

  3. Y. S. Chen, J. Fan, and W. Zhang, Text. Res. J., 73, 152 (2003).

    Article  CAS  Google Scholar 

  4. A. Majumdar, S. Mukhopadhyay, and R. Yadav, Int. J. Therm. Sci., 49, 2042 (2010).

    Article  Google Scholar 

  5. G. D. I. Frydrych and J. Bilska, “Comparative Analysis of the Thermal Insulation Properties of Fabrics Made of Natural and Man-Made Cellulose Fibres”, in Fibres & Textiles in Eastern Europe, 2002.

    Google Scholar 

  6. C. Vigneswaran, K. Chandrasekaran, and P. Senthilkumar, J. Ind. Text., 38, 289 (2009).

    Article  Google Scholar 

  7. D. Bhattacharjee and V. K. Kothari, Text. Res. J., 77, 4 (2007).

    Article  CAS  Google Scholar 

  8. M. B. Sampath, A. Aruputharaj, S. Mani, and G. Nalankilli, J. Ind. Text., 42, 1 (2011).

    Google Scholar 

  9. S. Zeinab and Abdel-Rehim, Autex Res. J., 6, 148 (2006).

    Google Scholar 

  10. A. Haghi, Theor. Found. Chem. Eng., 40, 14 (2006).

    Article  CAS  Google Scholar 

  11. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Lett., 6, 96 (2005).

    Article  Google Scholar 

  12. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett., 87, 215 (2001).

    Google Scholar 

  13. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008).

    Article  CAS  Google Scholar 

  14. A. Gowda, S. N. Paisner, S. Tonapi, P. Meneghetti, P. Hans, G. Strosaker, A. Acharya, K. Nagarkar, and K. Srihari, Proceedings of 7th Electronic Packaging Technology Conference, 2, 684 (2005).

    Google Scholar 

  15. Q. Liang, Y. Xiu, W. Lin, K.-S. Moon, and C. P. Wong, 59th Electronic Components and Technology Conference, p.437, 2009.

    Book  Google Scholar 

  16. H. Lai, X. Lu, H. Cui, X. Liu, S. Chen, T. Chen, and J. Liu, 11th International Conference on Electronic Packaging Technology & High Density Packaging, p.235, 2010.

    Google Scholar 

  17. M. Kozako, Y. Okazaki, M. Hikita, and T. Tanaka, 10th IEEE International Conference on Solid Dielectrics, p.1, 2010.

    Google Scholar 

  18. G.-W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, Compos. Part A-Appl. S., 37, 727 (2006).

    Article  Google Scholar 

  19. M. Ishigami, S. Aloni, and A. Zettl, AIP Conference Proceedings, 696, 94 (2003).

    Article  CAS  Google Scholar 

  20. A. Abbas, Y. Zhao, X. Wang, and T. Lin, J. Text. Inst., DOI:10.1080/00405000.2012.757007.

  21. W. S. Hickman in “Cellulosics Dyeing” (J. Shore Ed.), p.81, Society of Dyers and Colourists, Bradford, 1995.

  22. L. Liu, F. Xi, Y. Zhang, Z. Chen, and X. Lin, Sens. Actuators B, 135, 642 (2009).

    Article  CAS  Google Scholar 

  23. C. N. Suryawanshi and C.-T. Lin, ACS Appl. Mater. Interfaces, 1, 1334 (2009).

    Article  CAS  Google Scholar 

  24. Y. Zhang, Z. Shen, and Z. Tong, 8th International Conference on Electronic Packaging Technology, p.1, 2007.

    Google Scholar 

  25. M. Wang and N. Pan, Mater. Sci. Eng.: R: Reports, 63, 1 (2008).

    Article  Google Scholar 

  26. M. Wang, Q. Kang, and N. Pan, Appl. Therm. Eng., 29, 418 (2009).

    Article  Google Scholar 

  27. C. Yu, Y. S. Kim, D. Kim, and J. C. Grunlan, Nano Lett., 8, 4428 (2008).

    Article  CAS  Google Scholar 

  28. J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Phys. Rev. B, 59, 2514 (1999).

    Article  Google Scholar 

  29. J. Hone, M. Llaguno, N. Nemes, A. Johnson, J. Fischer, D. Walters, M. Casavant, J. Schmidt, and R. Smalley, Appl. Phys. Lett., 77, 666 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, A., Zhao, Y., Zhou, J. et al. Improving thermal conductivity of cotton fabrics using composite coatings containing graphene, multiwall carbon nanotube or boron nitride fine particles. Fibers Polym 14, 1641–1649 (2013). https://doi.org/10.1007/s12221-013-1641-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1641-y

Keywords

Navigation