Skip to main content
Log in

Interaction of microwave radiation with polyester yarn to enhance its textile properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The interaction of microwave radiation with Partially Oriented Polyester yarn (PET-POY) was studied with a view to improve its structure and textile related properties. The PET-POY filaments were exposed to Microwave (MW) radiations of frequency 2450 MHz for different durations of time from 15 to 105 sec. The changes in structure and morphology were investigated by using the techniques of X-ray diffraction, birefringence and DSC. The changes in the textile related properties like tensile strength, shrinkage and dye uptake were evaluated. The microwave treatment enhanced the structural properties of PET-POY samples. Significant increase in crystallinity, crystal size and crystalline orientation were noted. In addition a great improvement in total orientation, as measured by birefringence, was found for the treated samples. DSC results showed that crystal distribution became narrower and crystallization rate increased for microwave treated samples as compared to control sample. The tensile strength, shrinkage and dye uptake also showed significant increase, which is very helpful for the textile processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Imai, S. Nishimura, E. Abe, H. Tateyama, A. Abiko, A. Yamaguhi, T. Aoyama, and H. Tagnch, Chem. Mater., 14, 477 (2002).

    Article  CAS  Google Scholar 

  2. J. L. Koenig and M. Hannon, J. Appl. Phys., 41, 4290 (1970).

    Article  Google Scholar 

  3. G. M. Venkatesh, P. J. Bose, R. V. Shah, and N. E. Dweltz, J. Appl. Polym. Sci., 22, 2357 (1978).

    Article  CAS  Google Scholar 

  4. V. Valk, G. Jellinek, and U. Schroder, Text. Res. J., 50, 46 (1980).

    Article  CAS  Google Scholar 

  5. V. B. Gupta and S. J. Kumar, Appl. Polym. Sci., 26, 1865 (1981).

    Article  CAS  Google Scholar 

  6. V. B. Gupta, C. Ramesh, and A. K. Gupta, J. Appl. Polym. Sci., 29, 3115 (1984).

    Article  CAS  Google Scholar 

  7. V. B. Gupta, S. A. Mondal, and Y. C. Bhuvenesh, J. Appl. Polym. Sci., 65, 1773 (1997).

    Article  CAS  Google Scholar 

  8. V. B. Gupta, J. Appl. Polym. Sci., 83, 586 (2002).

    Article  CAS  Google Scholar 

  9. Y. Weidong, J. Appl. Polym. Sci., 91, 598 (2004).

    Article  Google Scholar 

  10. K. Ismil, J. Appl. Polym. Sci., 100, 142 (2006).

    Article  Google Scholar 

  11. J. V. Warwicker and S. G. Graham, J. Appl. Polym. Sci., 26, 3045 (1981).

    Article  CAS  Google Scholar 

  12. S. K. Garg, J. Appl. Polym. Sci., 27, 2857 (1982).

    Article  CAS  Google Scholar 

  13. M. S. Johnson, C. D. Rudd, and D. Hill, J. Int. Conf. Compos. Mater. Proc., 11/4, 37 (1997).

    Google Scholar 

  14. R. J. Day, S. H. C. Yan, and K. D. Hewson, Plast. Rubber. Compos. Process. Appl., 27/5, 217 (1998).

    Google Scholar 

  15. M. Darvekar and P. S. Vankar, Asia. Text. J., 8/12, 78 (1999).

    Google Scholar 

  16. R. G. Majetich and J. Hilks, Microwave Power and Electromagnetic Energy, 30, 27 (1995).

    Google Scholar 

  17. R. J. Gighers, T. L. Bray, S. M. Duncan, and G. Majetich, Text. Lett., 27, 4925 (1996).

    Google Scholar 

  18. T. L. Dawson, Text. Month, 2, 47 (1972).

    Google Scholar 

  19. J. D. Hatcher, K. B. Higgni, and D. W. Lyons, Text. Res. J., 45, 233 (1975).

    Article  Google Scholar 

  20. D. G. Evans and J. K. Skelly, J. Soc. Dye. Color., 88, 429 (1972).

    Article  CAS  Google Scholar 

  21. M. J. Delany, Text. Chem. Color., 4, 119 (1972).

    Google Scholar 

  22. N. Bhattacharya and A. Cama, 29th Jt. Tech. Conf. ATIRA, BTRA, SITRA and NITRA, pp.67–71, 1988.

  23. N. Bhattacharya, A. Cama, S. Chouhan, S. V. Chinoy, and R. B. Singh, Int. Text. J., C5, 84 (1990).

    Google Scholar 

  24. Publication of Bombay Textile Research Association, Final Tech. Report No 03-2-74, BTRA, 2004.

  25. L. E. Alexander, “X-ray Diff. Methods in Polymer Science”, Wiley-Interscience, John Wiley & Sons, Inc., New York, 1969.

    Google Scholar 

  26. M. J. Kale and N. V. Bhat, Coloration Technology, 127, 365 (2011).

    Article  CAS  Google Scholar 

  27. V. B. Gupta and S. Kumar, J. Appl. Polym. Sci., 26, 1865 and 1885 (1981).

    Article  CAS  Google Scholar 

  28. G. Farrow and D. Preston, J. Appl. Phys., 11, 353 (1960).

    CAS  Google Scholar 

  29. P. H. Hermans and A. Weidinger, J. Polym. Sci., 4, 709 (1949) and Makromol. Chem., 44/46, 24 (1961).

    Article  CAS  Google Scholar 

  30. W. O. Statton, J. Appl. Polym. Sci., 7, 803 (1963).

    Article  CAS  Google Scholar 

  31. J. H. Dumbleton and B. B. Bowles, J. Polym. Sci., 4, 951 (1966).

    CAS  Google Scholar 

  32. P. H. Hermans and A. Weidinger, Text. Res. J., 31, 558 (1961).

    Article  CAS  Google Scholar 

  33. J. E. Johnson, J. Appl. Polym. Sci., 5, 205 (1959).

    Article  Google Scholar 

  34. J. H. Wakelin, H. S. Virgin, and E. Crystal, J. Appl. Phys., 30, 1654 (1959).

    Article  CAS  Google Scholar 

  35. A. M. Hindeleh and D. J. Johnson, Polymer, 11, 666 (1970).

    Article  CAS  Google Scholar 

  36. H. M. Heuvel and R. Huisman, J. Appl. Polym. Sci., 22, 2229 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra V. Bhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhat, N.V., Kale, M.J. Interaction of microwave radiation with polyester yarn to enhance its textile properties. Fibers Polym 13, 936–942 (2012). https://doi.org/10.1007/s12221-012-0936-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0936-8

Keywords

Navigation