Skip to main content
Log in

Electrical conductivity and chromic behavior of poly (3-methylthiophene) — coated polyester fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrically conductive substrates with chromic behavior are prepared using conductive polymer coating of the substrate. Poly (3-methylthiophene) (P3MT) — coated polyester fabric with specific electrical and chromic properties, for instance electrochromic and piezochromic behavior, was successfully obtained by chemical polymerization with the help of continuous and speed stirring technique. The effect of polymerization time, temperature and oxidant concentration on conductivity of the P3MT-coated fabric was studied. The presence of P3MT particles on the surface of the coated substrate was confirmed by scanning electron microscopy (SEM), fourier transform infrared (FTIR) and UV-Vis spectroscopy, electrical surface resistivity, pressure and applied voltage dependence visible reflectance spectrophotometer measurements, and X-ray diffraction (XRD) analysis. The blue shift of c95 nm in wavelength of maximum absorption observed in the reflectance spectra of coated polyester fabric. Under high pressure, the P3MT-coated polyester fabric demonstrated piezochromism. The coated substrate also showed electrochromic behavior under an electrical applied voltage of 12 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Anbarasan, G. Paruthimal Kalaignan, T. Vasudevan, and A. Gopalan, Int. J. Polym. Anal. Charact, 5, 247 (1999).

    Article  CAS  Google Scholar 

  2. S. H. Kim, J. H. Seong, and K. W. Oh, J. Appl. Polym. Sci., 83, 2245 (2002).

    Article  CAS  Google Scholar 

  3. B. Kim, V. Koncar, E. Devaux, C. Dufour, and P. Viallier, Synth. Met., 146, 167 (2004).

    Article  CAS  Google Scholar 

  4. J. Wu, D. Zhou, C. O. Too, and G. G. Wallace, Synth. Met., 155, 698 (2005).

    Article  CAS  Google Scholar 

  5. K. H. Hong, K. W. Oh, and T. J. Kang, J. Appl. Polym. Sci., 97, 1326 (2005).

    Article  CAS  Google Scholar 

  6. Y. Li, X. Y. Cheng, M. Y. Leung, J. Tsang, X. M. Tao, and M. C. W. Yuen, Synth. Met., 155, 89 (2005).

    Article  CAS  Google Scholar 

  7. V. C. Gonçalves and D. T. Balogh, Eur. Polym. J., 42, 3303 (2006).

    Article  Google Scholar 

  8. A. Malinauskas, Polymer, 42, 3957 (2001).

    Article  CAS  Google Scholar 

  9. D. Knittel and E. Schollmeyer, Synth. Met., 159, 1433 (2009).

    Article  CAS  Google Scholar 

  10. R. Hirase, T. Shikata, and M. Shirai, Synth. Met., 146, 73 (2004).

    Article  CAS  Google Scholar 

  11. S. Almeida, E. Rivera, J. M. Reyna-Gonzalez, G. Huerta, F. Tapia, and M. Aguilar-Martinez, Synth. Met., 159, 1215 (2009).

    Article  CAS  Google Scholar 

  12. Y. Muramatsu, T. Yamamoto, M. Hasegawa, T. Yagi, and H. Koinuma, Polymer, 42, 6673 (2001).

    Article  CAS  Google Scholar 

  13. I. Levesque and M. Leclerc, Macromolecules, 30, 4347 (1997).

    Article  CAS  Google Scholar 

  14. K. Faid, M. Frechette, M. Ranger, L. Mazerolle, I. Levesque, and M. Leclerc, Chem. Mater., 7, 1390 (1995).

    Article  Google Scholar 

  15. H. D. Takagi, K. Noda, S. Itoh, and S. Iwatsuki, Platinum Metals Rev., 48, 117 (2004).

    Article  CAS  Google Scholar 

  16. J. Kunzelman, M. Gupta, B. R. Crenshaw, and D. A. Schiraldi, Macromol. Mater. Eng., 294, 246 (2009).

    Google Scholar 

  17. ATCC Test Method 76-2005, Electrical Surface Resistivity of Fabrics.

  18. M. B. Meador, D. Hardy-green, V. Auping, R. Gaier, L. A. Ferrara, D. S. Papadopoulos, J. W. Smith, and D. J. Keller, J. Appl. Polym. Sci., 97, 821 (1997).

    Article  Google Scholar 

  19. S. Hotta, S. D. D. V. Rughooputh, and A. J. Heeger, Synth. Met., 22, 79 (1987).

    Article  CAS  Google Scholar 

  20. M. Lanzi, P. C. Bizzarri, L. Paganin, and G. Cesari, Synth. Met., 157, 723 (2007).

    Article  Google Scholar 

  21. S. Hotta, M. Soga, and N. Sonoda, Synth. Met., 26, 273 (1988).

    Article  Google Scholar 

  22. M. Mellah, E. Labbe, J. Y. Nedelec, and J. Perichon, New J. Chem., 26, 208 (2002).

    Article  Google Scholar 

  23. Y. A. Udum, K. Pekmez, and A. Yildiz, Eur. Polym. J., 40, 1060 (2004).

    Article  Google Scholar 

  24. X. Ma, G. Li, H. Xu, M. Wang, and H. Chen, Thin Solid Films, 515, 2701 (2006).

    Google Scholar 

  25. E. K. Lee and S. Y. Choi, Korean J. Chem. Eng., 23, 1055 (2006).

    Article  CAS  Google Scholar 

  26. T. Sato, T. Yagi, H. Tajima, T. Fukuda, and T. Yamamoto, Reactive & Functional Polymers, 68, 372 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Mokhtari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhtari, J., Nouri, M. Electrical conductivity and chromic behavior of poly (3-methylthiophene) — coated polyester fabrics. Fibers Polym 13, 139–144 (2012). https://doi.org/10.1007/s12221-012-0139-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0139-3

Keywords

Navigation