Skip to main content
Log in

Fractional Generalized Logistic Equations with Indefinite Weight: Quantitative and Geometric Properties

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We deal with fractional generalized logistic problems in presence of a signed and unbounded weight. We describe the first eigenpair of the underlying operators and we show a bifurcation result for positive solutions, which are proved to be unique. A symmetry result is established under suitable geometric constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alama, S., Tarantello, G.: Elliptic problems with nonlinearities indefinite in sign. J. Funct. Anal. 141, 159–215 (1996)

    Google Scholar 

  2. Alves, M.O., Pimenta, M.T.O., Suárez, A.: Lotka-Volterra models with fractional diffusion. Proc. R. Soc. Edinb. A 147, 505–528 (2017)

    Google Scholar 

  3. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Google Scholar 

  4. Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.: The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22, 2813–2844 (2009)

    Google Scholar 

  5. Berestycki, H., Roquejoffre, J.-M., Rossi, L.: The periodic patch model for population dynamics with fractional diffusion. Discret. Contin. Dyn. Syst. S 4, 1–13 (2011)

    Google Scholar 

  6. Balackrishnan, A.V.: Fractional powers of closed operators an the semigroups generated by them. Pac. J. Math. 10, 419–437 (1960)

    Google Scholar 

  7. Brasco, L., Franzina, G.: Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J. 37, 769–799 (2014)

    Google Scholar 

  8. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20 (2016)

  9. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Google Scholar 

  10. Cabré, X., Roquejoffre, J.M.: The Influence of Fractional Diffusion in Fisher-KPP Equations. Commun. Math. Phys. 320, 679–722 (2013)

    Google Scholar 

  11. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32, 1245–1260 (2007)

    Google Scholar 

  12. Caffarelli, L., Vasseur, A.: Drift diffusion equation with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 2(171), 903–930 (2010)

    Google Scholar 

  13. Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Non-local minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)

    Google Scholar 

  14. Caffarelli, L., Dipierro, S., Valdinoci, E.: A logistic equation with nonlocal interactions. Kinet. Relat. Models 10, 141–170 (2017)

    Google Scholar 

  15. Cantrell, R.S., Cosner, C., Hutson, V.: Ecological models, permanence and spatial heterogeneity. Rocky Mt. J. Math. 26, 1–35 (1996)

    Google Scholar 

  16. Cantrell, R.S., Cosner, C., Hutson, V.: Spatial Ecology via Reaction-diffusion Equations. Wiley, New York (2003)

    Google Scholar 

  17. Carboni, G., Mugnai, D.: On some fractional equations with convex-concave and logistic-type nonlinearities. J. Differ. Equ. 262, 2393–2413 (2017)

    Google Scholar 

  18. Costa, D.G., Drábek, P., Tehrani, H.T.: Positive solutions to semilinear elliptic equations with logistic type nonlinearities and constant yield harvesting in \(\mathbb{R}^N\). Commun. Partial Differ. Equ. 33, 1597–1610 (2008)

    Google Scholar 

  19. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Google Scholar 

  20. Dipierro, S., Figalli, A., Valdinoci, E.: Strongly Nonlocal Dislocation Dynamics in Crystals. Commun. Partial Differ. Equ. 39, 2351–2387 (2014)

    Google Scholar 

  21. Du, Y., Ma, L.: Logistic type equations on \(\mathbb{R}^N\) by a squeezing method involving boundary blow-up solutions. J. Lond. Math. Soc. 2(64), 107–124 (2001)

    Google Scholar 

  22. Felmer, P., Wang, Y.: Radial symmetry of positive solutions to equations involving the fractional Laplacian. Commun. Contemp. Math. 16(01), 1350023 (2014)

    Google Scholar 

  23. Felmer, P., Quaas, A., Tan, J.: Positive solutions of nonlinear Schroedinger equation with the fractional Laplacian. Proc. R. Soc. Edinburgh A 142, 1237–1262 (2012)

    Google Scholar 

  24. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Google Scholar 

  25. Fragnelli, G., Mugnai, D., Papageorgiou, N.S.: Robin problems for the \(p\)-Laplacian with gradient dependence. Discret. Contin. Dyn. Syst. S 12, 287–295 (2019)

    Google Scholar 

  26. Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Mat. Univ. Parma 5, 315–328 (2014)

    Google Scholar 

  27. Girao, P., Tehrani, H.: Positive solutions to logistic type equations with harvesting. J. Differ. Equ. 247, 574–595 (2009)

    Google Scholar 

  28. Marinelli, A., Mugnai, D.: Generalized logistic equation with indefinite weight driven by the square root of the Laplacian. NonLinearity 27, 1–16 (2014)

    Google Scholar 

  29. Massaccesi, A., Valdinoci, E.: Is a nonlocal diffusion strategy convenient for biological populations in competition? J. Math. Biol. 74, 113–147 (2017)

    Google Scholar 

  30. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Google Scholar 

  31. Molica Bisci, G., Radulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  32. Montefusco, E., Pellacci, B., Verzini, G.: Fractional diffusion with Neumann boundary conditions: the logistic equation. Discret. Contin. Dyn. Syst. B 18, 2175–2202 (2013)

    Google Scholar 

  33. Mugnai, D., Papageorgiou, N.: Bifurcation for positive solutions of nonlinear diffusive logistic equations in \(\mathbb{R}^N\) with indefinite weight. Indiana Univ. Math. J. 63, 1397–1418 (2014)

    Google Scholar 

  34. Neand, Y., Nepomnyashchy, A.A.: Turing instability of anomalous reaction-anomalous diffusion systems. Eur. J. Appl. Math. 19, 329–349 (2008)

    Google Scholar 

  35. Pelcé, P.: New Visions on Form and Growth. Oxford University, New York (2004)

    Google Scholar 

  36. Radulescu, V., Repovs, D.: Combined effects in nonlinear problems arising in the study of anisotropic continuous media. Nonlinear Anal. 75, 1524–1530 (2012)

    Google Scholar 

  37. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Google Scholar 

  38. Ros-Oton, X., Serra, J.: The extremal solution for the fractional Laplacian. Calc. Var. Partial Differ. Equ. 50, 723–750 (2014)

    Google Scholar 

  39. Ruiz, D., Suarez, A.: Existence and uniqueness of positive solution of a logistic equation with nonlinear gradient term. Proc. R. Soc. Edinb. A 137, 555–566 (2007)

    Google Scholar 

  40. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 33, 2105–2137 (2013)

    Google Scholar 

  41. Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58, 133–154 (2014)

    Google Scholar 

  42. Shi, J., Shivaji, R.: Semilinear elliptic equations with generalized cubic nonlinearities. In: Proceedings of the Fifth International Conference on Dynamical Systems on Difference Equations, Pomona, CA (2005)

  43. Song, R., Vondraček, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields 125, 578–592 (2003)

    Google Scholar 

  44. Szulkin, A., Willem, M.: Eigenvalue problems with indefinite weight. Studia Math. 135, 191–201 (1999)

    Google Scholar 

  45. Torres Ledesma, C.E.: Existence and symmetry result for fractional \(p-\)Laplacian in \(\mathbb{R}^N\). Commun. Pure Appl. Anal. 16, 99–113 (2017)

    Google Scholar 

  46. Vazquez, J.L.: Nonlinear diffusion with fractional laplacian operators. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear Partial Differential Equations: The Abel Symposium 2010, pp. 271–298. Springer, New York (2012)

    Google Scholar 

  47. Yang, R., Lü, Z.: The properties of positive solutions to semilinear equations involving the fractional Laplacian. Commun. Pure Appl. Anal. 18, 1073–1089 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Mugnai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D. Mugnai is a member of GNAMPA and is supported by the MIUR National Research Project Variational methods, with applications to problems in mathematical physics and geometry (2015KB9WPT_009) and by the FFABR “Fondo per il finanziamento delle attività base di ricerca” 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinelli, A., Mugnai, D. Fractional Generalized Logistic Equations with Indefinite Weight: Quantitative and Geometric Properties. J Geom Anal 30, 1985–2009 (2020). https://doi.org/10.1007/s12220-020-00353-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00353-x

Keywords

Mathematics Subject Classification

Navigation