Skip to main content
Log in

X-ray Transforms in Pseudo-Riemannian Geometry

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the problem of recovering a function on a pseudo-Riemannian manifold from its integrals over all null geodesics in three geometries: pseudo-Riemannian products of Riemannian manifolds, Minkowski spaces, and tori. We give proofs of uniqueness and characterize non-uniqueness in different settings. Reconstruction is sometimes possible if the signature \((n_1,n_2)\) satisfies \(n_1\ge 1\) and \(n_2\ge 2\) or vice versa and always when \(n_1,n_2\ge 2\). The proofs are based on a Pestov identity adapted to null geodesics (product manifolds) and Fourier analysis (other geometries). The problem in a Minkowski space of any signature is a special case of recovering a function in a Euclidean space from its integrals over all lines with any given set of admissible directions, and we describe sets of lines for which this is possible. Characterizing the kernel of the null geodesic ray transform on tori reduces to solvability of certain Diophantine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Begmatov, A.K.: A certain inversion problem for the ray transform with incomplete data. Sib. Math. J. 42(3), 428–434 (2001)

    Article  MATH  Google Scholar 

  2. Bellassoued, M., Ferreira, D.D.S.: Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Probl. Imaging 5(4), 745–773 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aïcha, I.B.: Stability estimate for a hyperbolic inverse problem with time-dependent coefficient. Inverse Probl. 31(12), 125010 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boman, J., Quinto, E.T.: Support theorems for real analytic radon transforms on line complexes. Trans. Am. Math. Soc. 335, 877–890 (1993)

    Article  MATH  Google Scholar 

  5. Dairbekov, N.S.: Integral geometry problem for nontrapping manifolds. Inverse Probl. 22(2), 431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frikel, J.: Reconstructions in limited angle x-ray tomography: Characterization of classical reconstructions and adapted curvelet sparse regularization. PhD thesis, Technischen Universität München (013)

  7. Guillemin, V.: Cosmology in \((2 + 1)\)-Dimensions, Cyclic Models, and Deformations of \(M_{2,1}\). Annals of Mathematics Studies, vol. 121. Princeton University Press, Upper Saddle River (1989)

  8. Hardy, G.H., Wright, E.M.: An iNtroduction to the Theory of Numbers, 4th edn. Oxford University Press, Oxford (1960)

    MATH  Google Scholar 

  9. Ilmavirta, J.: On Radon transforms on tori. J. Fourier Anal. Appl. 21(2), 370–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kian, Y., Oksanen, L.: Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations (2016). arXiv:1606.07243

  11. Lassas, M., Oksanen, L., Stefanov, P., Uhlmann, G.: On the inverse problem of finding cosmic strings and other topological defects (2015). arXiv:1505.03123

  12. Montalto, C.: Stable determination of a simple metric, a covector field and a potential from the hyperbolic dirichlet-to-neumann map. Commun. Partial Differ. Equ. 39(1), 120–145 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mukhometov, R.G.: The problem of recovery of two-dimensional riemannian metric and integral geometry. Sov. Math. Dokl. 18(1), 27–31 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Orlov, S.S.: Theory of three-dimensional reconstruction. 1. conditions of a complete set of projections. Sov. Phys. Crystallogr. 20, 312–314 (1976)

    Google Scholar 

  15. Paternain, G.P., Salo, M., Uhlmann, G.: Tensor tomography on surfaces. Invent. Math. 193(1), 229–247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Paternain, G.P., Salo, M., Uhlmann, G.: Tensor tomography: progress and challenges. Chin. Ann. Math. Ser. B 35(3), 399–428 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Paternain, G.P., Salo, M., Uhlmann, G.: Invariant distributions, beurling transforms and tensor tomography in higher dimensions. Math. Ann. 363(1–2), 305–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pestov, L.: Well-Posedness Questions of the Ray Tomography Problems. Siberian Science Press, Moscow (2003)

    Google Scholar 

  19. Pestov, L., Uhlmann, G.: Two dimensional compact simple riemannian manifolds are boundary distance rigid. Ann. Math. 161(2), 1093–1110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pestov, L.N., Sharafutdinov, V.A.: Integral geometry of tensor fields on a manifold of negative curvature. Sib. Math. J. 29(3), 427–441 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramm, A.G., Rakesh: Property \(C\) and an inverse problem for a hyperbolic equation. J. Math. Anal. Appl. 156(1), 209–219 (1991)

  22. Ramm, A.G., Sjöstrand, J.: An inverse problem of the wave equation. Math. Z. 206(1), 119–130 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Salazar, R.: Determination of time-dependent coefficients for a hyperbolic inverse problem. Inverse Probl. 29(9), 095015 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sharafutdinov, V.A.: Integral Geometry of Tensor Fields. Walter de Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

  25. Stefanov, P.: Support theorems for the Light Ray transform on analytic Lorentzian manifolds. Proc. Am. Math. Soc. 145, 1259–1274 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stefanov, P., Uhlmann, G.: Microlocal Analysis and Integral Geometry. Book in progress

  27. Stefanov, P., Yang, Y.: The Inverse Problem for the Dirichlet-to-Neumann map on Lorentzian manifolds (2016). arXiv:1607.08690

  28. Stefanov, P.D.: Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials. Math. Z. 201(4), 541–559 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Waters, A.: Stable determination of x-ray transforms of time dependent potentials from partial boundary data. Commun. Partial Differ. Equ. 39(12), 2169–2197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Some of this work was completed during the author’s visit to the University of Washington, Seattle, and he is indebted for the hospitality and support offered there; this includes financial support from Gunther Uhlmann’s NSF grant DMS-1265958. The author was also partially supported by an ERC Starting Grant (grant agreement no 307023). He is also grateful to Gunther Uhlmann, Todd Quinto and Mikko Salo for discussions, and the referees for several insightful observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonas Ilmavirta.

Appendix 1: Bundles and Differential Operators

Appendix 1: Bundles and Differential Operators

We give an overview of the various bundles, differential operators, and vector fields used throughout this paper, especially Sect. 2. We start with Riemannian manifolds and then proceed to pseudo-Riemannian ones.

1.1 Riemannian Manifolds

Let M be a compact, smooth Riemannian manifold of dimension n, and denote its unit sphere bundle by SM. The geodesic vector field X is the generator of the geodesic flow on SM, and it acts as a differential operator \(C^\infty (SM)\rightarrow C^\infty (SM)\).

For \(\theta =(x,v)\in SM\), denote by \(N_\theta \) the hyperplane of \(T_xM\) orthogonal to v. Let N denote the bundle over SM whose fiber at \(\theta \) is \(N_\theta \). This is a subbundle of TSM under the following identifications.

Vectors in TTM can be canonically split into horizontal and vertical components. Give any \(\theta =(x,v)\in TM\), the horizontal and vertical fibers \(H(\theta )\) and \(V(\theta )\) of \(T_\theta TM\) can both be identified with \(T_xM\). Declaring these identifications as isometric and requiring horizontal and vertical vectors to be orthogonal to each other produces the Sasaki metric on TM.

A similar splitting is naturally induced on TSM. The gradient of a function \(u\in C^\infty (SM)\) can be decomposed into geodesic, horizontal, and vertical components as

$$\begin{aligned} \nabla _{SM}u = ((Xu)X,{{\mathrm{\overset{\scriptstyle h}{\nabla }}}}u,{{\mathrm{\overset{\scriptstyle v}{\nabla }}}}u). \end{aligned}$$
(47)

The horizontal and vertical gradients \({{\mathrm{\overset{\scriptstyle h}{\nabla }}}}u\) and \({{\mathrm{\overset{\scriptstyle v}{\nabla }}}}u\) are originally vector fields on SM. Via the identification made above they can both be considered sections of the bundle N.

The horizontal divergence \({{\mathrm{\overset{\scriptstyle h}{{\text {div}}}}}}\) is the formal adjoint of \(-{{\mathrm{\overset{\scriptstyle h}{\nabla }}}}\) with respect to the measure on SM induced by the Sasaki metric. The vertical divergence \({{\mathrm{\overset{\scriptstyle v}{{\text {div}}}}}}\) is defined similarly as an adjoint of \(-{{\mathrm{\overset{\scriptstyle v}{\nabla }}}}\). Both divergences map sections of N to smooth functions on SM.

The geodesic vector field X acts also on the sections of N by covariant differentiation along the geodesic flow. The actions of the geodesic vector field on the scalars on SM and the sections of N both obey \(X^*=-X\).

The curvature operator R maps the sections of N to sections of N.

Let x be some local coordinates on M and (xy) the associated coordinates on TM. We define the vector fields \(\delta _{x^i}=\partial _{x^i}-\Gamma ^j_{\phantom {j}ik}y^k\partial _{y^j}\) on TM. These vectors \(\delta _{x^i}\) span the horizontal fiber H(xy) and the vectors \(\partial _{y^i}\) span V(xy). These vector fields act on TM, and we can turn them into vector fields on SM as follows.

Let \(p:TM{\setminus }0\rightarrow SM\) be the radial projection \(p(x,y)=(x,y/\left| y \right| )\). The local vector fields \(\delta _i\) and \(\partial _i\) on SM are defined so that

$$\begin{aligned} \begin{aligned} \delta _i u&= \delta _{x^i}(u\circ p)|_{SM} \quad \text {and} \\ \partial _i u&= \partial _{y^i}(u\circ p)|_{SM} \end{aligned} \end{aligned}$$
(48)

for any \(u\in C^\infty (SM)\). The geodesic vector field and the two gradients of the decomposition (47) are then \(Xu=y^i\delta _iu\), \({{\mathrm{\overset{\scriptstyle h}{\nabla }}}}u =(\delta ^i-y^iy^j\delta _ju)\partial _{x^i}\), and \({{\mathrm{\overset{\scriptstyle v}{\nabla }}}}u=(\partial ^iu)\partial _{x^i}\). For details on the coordinate representations of these operators, we refer to [17, Appendix A]. The commutator formulas listed in Sect. 2.2 were also proved there.

1.2 Pseudo-Riemannian Product Manifolds

As was argued in the proof of Theorem 1, the conformal factor is irrelevant for the ray transform problem studied here. Therefore we restrict our attention to pseudo-Riemannian products of Riemannian manifolds with no conformal factor.

Let \(M_1\) and \(M_2\) be two Riemannian manifolds and \(M=M_1\times M_2\) their product manifold. We add subindices to all Riemannian operators introduced in Sect. 1 to indicate which manifold they act on. We equip it with the pseudo-Riemannian product metric \(g_1\ominus g_2\), but this choice is irrelevant for the present discussion of operators and bundles. The light cone bundle \(LM=SM_1\times SM_2\) comes with two natural projections, \(\pi _i:LM\rightarrow SM_i\), \(i=1,2\).

Let u be a smooth function on LM. Keeping \((x_2,v_2)\in SM_2\) fixed, one can regard it as a function on \(SM_1\) and apply the Riemannian operators \(X_1\), \({{\mathrm{\overset{\scriptstyle h}{\nabla }}}}_1\), and \({{\mathrm{\overset{\scriptstyle v}{\nabla }}}}_1\) introduced in Sect. 1. Now \(X_1u\) is simply a scalar function on LM. If the point on \(SM_2\) is fixed, the gradients \({{\mathrm{\overset{\scriptstyle h}{\nabla }}}}_1u\) and \({{\mathrm{\overset{\scriptstyle v}{\nabla }}}}_1u\) are sections of the bundle \(N_1\). It is therefore natural to consider the two gradients to be sections of the pullback bundle \(\pi _1^*N_1\). We extend similarly operators from \(SM_2\) to LM.

Given any point in LM, the gradients \({{\mathrm{\overset{\scriptstyle h}{\nabla }}}}_1u\) and \({{\mathrm{\overset{\scriptstyle v}{\nabla }}}}_1u\) are in the same space via the identifications we use freely. However, the gradients \({{\mathrm{\overset{\scriptstyle h}{\nabla }}}}_2u\) and \({{\mathrm{\overset{\scriptstyle v}{\nabla }}}}_2u\) are not in the same space with them.

The product structure ensures that operators on \(SM_1\) commute with those acting on \(SM_2\). The coordinate representations of these operators are readily found using coordinates on the two base manifolds \(M_1\) and \(M_2\) to give coordinates on M, and by applying the Riemannian coordinate descriptions mentioned at the end of Sect. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilmavirta, J. X-ray Transforms in Pseudo-Riemannian Geometry. J Geom Anal 28, 606–626 (2018). https://doi.org/10.1007/s12220-017-9834-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9834-z

Keywords

Mathematics Subject Classification

Navigation