Skip to main content
Log in

(KN)-Convexity and the Curvature-Dimension Condition for Negative N

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We extend the range of N to negative values in the (KN)-convexity (in the sense of Erbar–Kuwada–Sturm), the weighted Ricci curvature \(\mathop {\mathrm {Ric}}\nolimits _N\) and the curvature-dimension condition \(\mathop {\mathrm {CD}}\nolimits (K,N)\). We generalize a number of results in the case of \(N>0\) to this setting, including Bochner’s inequality, the Brunn–Minkowski inequality and the equivalence between \(\mathop {\mathrm {Ric}}\nolimits _N \ge K\) and \(\mathop {\mathrm {CD}}\nolimits (K,N)\). We also show an expansion bound for gradient flows of Lipschitz (KN)-convex functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N.: Lecture Notes in Mathematics. A user’s guide to optimal transport, modeling and optimisation of flows on networks, vol. 2062. Springer, Heidelberg (2013)

    Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195, 289–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259, 28–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakry, D., Gentil, I., Ledoux, M.: On Harnack inequalities and optimal transportation, to appear in Ann. Scuola Norm. Sup. Pisa. Available at arXiv:1210.4650

  7. Bobkov, S.G., Ledoux, M.: Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann. Probab. 37, 403–427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bolley, F., Gentil, I., Guillin, A.: Dimensional contraction via Markov transportation distance. J. Lond. Math. Soc. 90(2), 309–332 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borell, C.: Convex set functions in \(d\)-space. Period. Math. Hungar. 6, 111–136 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22, 366–389 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daneri, S., Savaré, G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40, 1104–1122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, to appear in Invent. Math. Available at arXiv:1303.4382

  13. Figalli, A., Gigli, N.: Local semiconvexity of Kantorovich potentials on non-compact manifolds. ESAIM Control Optim. Calc. Var. 17, 648–653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garofalo, N., Mondino, A.: Li-Yau and Harnack type inequalities in \(RCD^*(K, N)\) metric measure spaces. Nonlinear Anal. 95, 721–734 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gigli, N., Kuwada, K., Ohta, S.: Heat flow on Alexandrov spaces. Commun. Pure Appl. Math. 66, 307–331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hua, B., Kell, M., Xia, C.: Harmonic functions on metric measure spaces, Preprint (2013). Available at arXiv:1308.3607

  17. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolesnikov, A.V., Milman, E.: Poincaré and Brunn-Minkowski inequalities on weighted Riemannian manifolds with boundary, Preprint (2013). Available at arXiv:1310.2526

  19. Kuwada, K.: Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates, to appear in Calc. Var. Partial Differ. Equ. Available at arXiv:1308.5471

  20. Lee, P.W.Y.: Displacement interpolations from a Hamiltonian point of view. J. Funct. Anal. 265, 3163–3203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lott, J.: Some geometric properties of the Bakry-Émery-Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lott, J., Villani, C.: Weak curvature conditions and functional inequalities. J. Funct. Anal. 245, 311–333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(2), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Milman, E., Rotem, L.: Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures. Adv. Math. 262, 867–908 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ohta, S.: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82, 805–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ohta, S.: Gradient flows on Wasserstein spaces over compact Alexandrov spaces. Am. J. Math. 131, 475–516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ohta, S.: Finsler interpolation inequalities. Calc. Var. Partial Differ. Equ. 36, 211–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ohta, S.: On the curvature and heat flow on Hamiltonian systems. Anal. Geom. Metr. Spaces 2, 81–114 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Ohta, S., Sturm, K.-T.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62, 1386–1433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ohta, S., Sturm, K.-T.: Non-contraction of heat flow on Minkowski spaces. Arch. Ration. Mech. Anal. 204, 917–944 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ohta, S., Sturm, K.-T.: Bochner-Weitzenböck formula and Li-Yau estimates on Finsler manifolds. Adv. Math. 252, 429–448 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ohta, S., Takatsu, A.: Displacement convexity of generalized relative entropies. Adv. Math. 228, 1742–1787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ohta, S., Takatsu, A.: Displacement convexity of generalized relative entropies. II. Commun. Anal. Geom. 21, 687–785 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qian, Z.: Estimates for weighted volumes and applications. Quart. J. Math. Oxford Ser. 48(2), 235–242 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Villani, C.: Optimal Transport, Old and New. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

I am grateful to Kazumasa Kuwada for valuable suggestions and discussions, especially on the expansion bound in Subsection 3.2. I thank Asuka Takatsu for fruitful discussions, some of the results in Subsections 4.1, 4.2 originate from discussions during the joint work [33, 34]. My gratitude also goes to Frank Morgan for drawing my attention to [25] and [18], and to Emanuel Milman for his helpful comments on the background of [25] and [18]. Supported in part by the Grant-in-Aid for Young Scientists (B) 23740048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Ohta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohta, Si. (KN)-Convexity and the Curvature-Dimension Condition for Negative N . J Geom Anal 26, 2067–2096 (2016). https://doi.org/10.1007/s12220-015-9619-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9619-1

Keywords

Mathematics Subject Classification

Navigation