Abstract
We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the \(\overline{\partial }\)-Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in \(L^2\)-spaces. Finally we remark that the \(\overline{\partial }\)-Neumann operator can be continuously extended provided a subelliptic estimate holds.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics. Academic Press, Waltham, MA (2006)
Beals, R., Greiner, P.C., Stanton, N.K.: \(L^p\) and Lipschitz estimates for the \({\overline{\partial }}\)-equation the \({\overline{\partial }}\)-Neumann problem. Math. Ann. 277, 185–196 (1987)
Bonami, A., Sibony, N.: Sobolev embedding in \(\mathbb{C}^n\) and the \({\overline{\partial }}\)-equation. J. Geom. Anal. 1, 307–327 (1991)
Brezis, H.: Analyse Fonctionnelle, Théorie et Applications. Masson, Paris (1983)
Catlin, D.W.: Necessary conditions for subellipticity of the \(\overline{\partial }\)-Neumann problem. Ann. Math. 117, 147–171 (1983)
Catlin, D.W.: Boundary invariants of pseudoconvex domains. Ann. Math. 120, 529–586 (1984)
Catlin, D.W.: Subelliptic estimates for the \(\overline{\partial }\)-Neumann problem on pseudoconvex domains. Ann. Math. 126, 131–191 (1987)
D’Angelo, J.P.: Finite type conditions for real hypersurfaces. J. Differen. Geom. 14, 59–66 (1979)
D’Angelo, J.P.: Real hypersurfaces, orders of contact, and applications. Ann. Math. 115, 615–637 (1979)
Haslinger, F.: Compactness for the \({\overline{\partial }}\)- Neumann problem-a functional analysis approach. Collectanea Math. 62, 121–129 (2011)
Kim, M.: Inheritance of noncompactness of the \({\overline{\partial }}\)-Neumann problem. J. Math. Anal. Appl. 302, 450–456 (2005)
Krantz, S.: Optimal Lipschitz and \(L^p\) estimates for the equation \({\overline{\partial }} u=f\) on strongly pseudoconvex domains. Math. Ann. 219, 233–260 (1976)
Lieb, I., Range, R.M.: Integral representations and estimates in the theory of the \({\overline{\partial }}\)-Neumann problem. Ann. Math. 123, 265–301 (1986)
Straube, E.: The \(L^2\)-Sobolev theory of the \({\overline{\partial }}\)-Neumann problem. ESI Lectures in Mathematics and Physics, EMS (2010)
Acknowledgments
The author wishes to express his gratitude to the referee for helpful suggestions. Partially supported by the FWF-Grant P23664.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Haslinger, F. Sobolev Inequalities and the \(\overline{\partial }\)-Neumann Operator. J Geom Anal 26, 287–293 (2016). https://doi.org/10.1007/s12220-014-9549-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12220-014-9549-3
Keywords
Mathematics Subject Classification
Profiles
- Friedrich Haslinger View author profile