Skip to main content
Log in

Sobolev Inequalities and the \(\overline{\partial }\)-Neumann Operator

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the \(\overline{\partial }\)-Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in \(L^2\)-spaces. Finally we remark that the \(\overline{\partial }\)-Neumann operator can be continuously extended provided a subelliptic estimate holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics. Academic Press, Waltham, MA (2006)

    Google Scholar 

  2. Beals, R., Greiner, P.C., Stanton, N.K.: \(L^p\) and Lipschitz estimates for the \({\overline{\partial }}\)-equation the \({\overline{\partial }}\)-Neumann problem. Math. Ann. 277, 185–196 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonami, A., Sibony, N.: Sobolev embedding in \(\mathbb{C}^n\) and the \({\overline{\partial }}\)-equation. J. Geom. Anal. 1, 307–327 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezis, H.: Analyse Fonctionnelle, Théorie et Applications. Masson, Paris (1983)

    MATH  Google Scholar 

  5. Catlin, D.W.: Necessary conditions for subellipticity of the \(\overline{\partial }\)-Neumann problem. Ann. Math. 117, 147–171 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Catlin, D.W.: Boundary invariants of pseudoconvex domains. Ann. Math. 120, 529–586 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Catlin, D.W.: Subelliptic estimates for the \(\overline{\partial }\)-Neumann problem on pseudoconvex domains. Ann. Math. 126, 131–191 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. D’Angelo, J.P.: Finite type conditions for real hypersurfaces. J. Differen. Geom. 14, 59–66 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. D’Angelo, J.P.: Real hypersurfaces, orders of contact, and applications. Ann. Math. 115, 615–637 (1979)

    Article  MathSciNet  Google Scholar 

  10. Haslinger, F.: Compactness for the \({\overline{\partial }}\)- Neumann problem-a functional analysis approach. Collectanea Math. 62, 121–129 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kim, M.: Inheritance of noncompactness of the \({\overline{\partial }}\)-Neumann problem. J. Math. Anal. Appl. 302, 450–456 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Krantz, S.: Optimal Lipschitz and \(L^p\) estimates for the equation \({\overline{\partial }} u=f\) on strongly pseudoconvex domains. Math. Ann. 219, 233–260 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lieb, I., Range, R.M.: Integral representations and estimates in the theory of the \({\overline{\partial }}\)-Neumann problem. Ann. Math. 123, 265–301 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Straube, E.: The \(L^2\)-Sobolev theory of the \({\overline{\partial }}\)-Neumann problem. ESI Lectures in Mathematics and Physics, EMS (2010)

Download references

Acknowledgments

The author wishes to express his gratitude to the referee for helpful suggestions. Partially supported by the FWF-Grant P23664.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Haslinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haslinger, F. Sobolev Inequalities and the \(\overline{\partial }\)-Neumann Operator. J Geom Anal 26, 287–293 (2016). https://doi.org/10.1007/s12220-014-9549-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9549-3

Keywords

Mathematics Subject Classification

Profiles

  1. Friedrich Haslinger