Skip to main content

Advertisement

Log in

On the Stability of the p-Affine Isoperimetric Inequality

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Employing the affine normal flow, we prove a stability version of the p-affine isoperimetric inequality for p≥1 in ℝ2 in the class of origin-symmetric convex bodies. That is, if K is an origin-symmetric convex body in ℝ2 such that it has area π and its p-affine perimeter is close enough to the one of an ellipse with the same area, then, after applying a special linear transformation, K is close to an ellipse in the Hausdorff distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, B.: Contraction of convex hypersurfaces by their affine normal. J. Differ. Geom. 43, 207–230 (1996)

    MATH  Google Scholar 

  2. Andrews, B.: Motion of hypersurfaces by Gauss curvature. Pacific J. Math. 195(1), 1–34 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, B.: Singularities in crystalline curvature flows. Asian J. Math. 6, 101–121 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Ball, K., Böröczky, K.J.: Stability of the Prékopa–Leindler inequality. Mathematika 56, 339–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, K., Böröczky, K.J.: Stability of some versions of the Prékopa–Leindler inequality. Monatshefte Math. 163, 1–14 (2011)

    Article  MATH  Google Scholar 

  6. Barthe, F., Böröczky, K.J., Fradelizi, M.: Stability of the functional forms of the Blaschke–Santaló inequality. arXiv:1206.0369v1 [math.MG]

  7. Blaschke, W.: Über affine Geometrie I. Isoperimetrische Eigenschaften von Ellipse und Ellipsoid. Leipz. Ber. 68, 217–239 (1916)

    Google Scholar 

  8. Böröczky, K.J., Hug, D.: Stability of the reverse Blaschke–Santaló inequality for zonoids and applications. Adv. Appl. Math. 44, 309–328 (2010)

    Article  MATH  Google Scholar 

  9. Böröczky, K.J.: The stability of the Rogers–Shephard inequality. Adv. Math. 190, 47–76 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Böröczky, K.J.: Stability of Blaschke–Santaló inequality and the affine isoperimetric inequality. Adv. Math. 225, 1914–1928 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Böröczky, K.J., Makai, E. Jr.: On the volume product of planar polar convex bodies-upper estimates: the polygonal case and stability. In preparation

  12. Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. PDEs. 36, 419–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diskant, V.I.: Stability of the solution of a Minkowski equation. Sib. Mat. Zh. 14, 669–673 (1973) (in Russian). Engl. transl.: Siberian Math. J. 14, 466–473 (1974)

    MathSciNet  MATH  Google Scholar 

  14. Hug, D.: Contributions to affine surface area. Manuscr. Math. 91, 283–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hug, D., Schneider, R.: A stability result for volume ratio. Isr. J. Math. 161, 209–219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Groemer, H.: Stability of geometric inequalities. In: Handbook of Convex Geometry, pp. 125–150. North-Holland, Amsterdam (1993)

    Chapter  Google Scholar 

  17. Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math. 5, 521–538 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Gruber, P.M.: Convex and Discrete Geometry. Grundlehren der Mathematischen Wissenschaften, vol. 336. Springer, Berlin (2007)

    MATH  Google Scholar 

  19. Ivaki, M.N.: Centro-affine curvature flows on centrally symmetric convex curves. Trans. Am. Math. Soc., to appear. arXiv:1205.6456v2 [math.DG]

  20. Ivaki, M.N.: A flow approach to the L −2 Minkowski problem. Adv. Appl. Math. 50, 445–464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on His 60th Birthday, Jan. 8, 1948, pp. 187–204. Interscience, New York (1948)

    Google Scholar 

  22. Ludwig, M., Reitzner, M.: A classification of SL(n) invariant valuations. Ann. Math. 172, 1223–1271 (2010)

    Article  MathSciNet  Google Scholar 

  23. Ludwig, M.: General affine surface area. Adv. Math. 224, 2346–2360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lutwak, E., Oliker, V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom. 41, 227–246 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Lutwak, E.: The Brunn–Minkowski–Firey theory. I: Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    MathSciNet  MATH  Google Scholar 

  26. Lutwak, E.: The Brunn–Minkowski–Firey theory. II: Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev norms and the L p-Minkowski problem. Int. Math. Res. Notices 2006 (2006). doi:10.1155/IMRN/2006/62987

  28. Lutwak, E., Yang, D., Zhang, G.: Sharp affine L p Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Lutwak, E., Yang, D., Zhang, G.: The Cramer–Rao inequality for star bodies. Duke Math. J. 112, 59–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lutwak, E., Yang, D., Zhang, G.: L p affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Meyer, M., Werner, E.: On the p-affine surface area. Adv. Math. 152, 288–313 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Petty, C.M.: Affine isoperimetric problems, discrete geometry and convexity. In: Goodman, J.E., Lutwak, E., Malkevitch, J., Pollack, R. (eds.) Proc. Conf. New York 1982. Annals New York Acad. Sci., vol. 440, pp. 113–127 (1985)

    Google Scholar 

  33. Schütt, C., Werner, E.: Surface bodies and p-affine surface area. Adv. Math. 187, 98–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sapiro, G., Tannenbaum, A.: On affine plane curve evolution. J. Funct. Anal. 119, 79–120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stancu, A.: The discrete planar L 0-Minkowski problem. Adv. Math. 167, 160–174 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stancu, A.: On the number of solutions to the discrete two-dimensional L 0-Minkowski problem. Adv. Math. 180, 290–323 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stancu, A.: Two volume product inequalities and their applications. Can. Math. Bull. 52, 464–472 (2004)

    Article  MathSciNet  Google Scholar 

  38. Stancu, A.: The floating body problem. Bull. Lond. Math. Soc. 38, 839–846 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stancu, A.: The necessary condition for the discrete L 0-Minkowski problem in ℝ2. J. Geom. 88, 162–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stancu, A.: Centro-affine invariants for smooth convex bodies. Int. Math. Res. Not. (2011). doi:10.1093/imrn/rnr110

    Google Scholar 

  41. Stancu, A.: Some affine invariants revisited. arXiv:1208.0783v1 [math.FA]

  42. Trudinger, N.S., Wang, X.J.: The Bernstein problem for affine maximal hypersurfaces. Invent. Math. 140, 399–422 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Trudinger, N.S., Wang, X.J.: Affine complete locally convex hypersurfaces. Invent. Math. 150, 45–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Trudinger, N.S., Wang, X.J.: The affine Plateau problem. J. Am. Math. Soc. 18, 253–289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Trudinger, N.S., Wang, X.J.: Boundary regularity for the Monge–Ampère and affine maximal surface equations. Ann. Math. 167, 993–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Werner, E., Ye, D.: New L p affine isoperimetric inequalities. Adv. Math. 218, 762–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Alina Stancu and Károly Böröczky for comments and suggestions that have improved the initial manuscript. I am indebted to two referees for the very careful reading of the original submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad N. Ivaki.

Additional information

Communicated by Ben Andrews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivaki, M.N. On the Stability of the p-Affine Isoperimetric Inequality. J Geom Anal 24, 1898–1911 (2014). https://doi.org/10.1007/s12220-013-9401-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-013-9401-1

Keywords

Mathematics Subject Classification (2010)

Navigation